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A comparative modeling  and optimization of  citric acid production from Aspergillus niger MCBN297 
using  Response Surface Methodology (RSM) and Artificial Neural Network (ANN) coupling Genetic 
Algorithm (GA) was carried out  on seven process parameters. 
 A polynomial model was developed and RSM optimum process setpoints were determined. A 
multilayer ANN was structured, trained on experimental data, and served as fitness function for GA 
optimization. 
Two ANN optimized media for citric acid production with predicted values of 4.69 g/L each, gave 
experimental productions of 6.65 and 6.68 g/L respectively, values higher than expected. Similarly, two 
RSM optimized media with predicted production of 7.19 and 7.04 g/L respectively, gave experimental 
values of 2.40 and 3.53 g/L respectively, exceedingly below RSM expectation. However, RSM provided 
good insight on parameters interactions. Both models can be developed using the same data pool. 

1. Introduction 
Citric acid (2-hydroxy-1,2,3-propanetricarboxylic acid) is one of the most exploited fermentation 
product, produced  almost exclusively by  Aspergillus  niger. It  is used  in many industrial  areas such 
as the  food, cosmetic, pharmaceutical, chemical, textile  and electroplating  industries (Lofty et al., 
2007). The global production of citric acid has reached 1.7 million tonnes per year as estimated by 
Business Communications Co. (BCC, www.bccresearch.com) and is increasing at annual growth rate 
of 5 %. The  demand  for  citric  acid  production  is  increasing  faster  than  its  production and  hence  
more  economical  process models   are  needed. 
Presently, fermentation process modeling and optimization is carried out using either  the statistical 
Response Surface Methodology (RSM) with its associated designs such as Plackett, Box-behnken and 
Central composite (K�l�c et al., 2002; Bari et al., 2009;), or the Artificial Neural Network (ANN) modeling 
and Genetic Algorithm (GA) optimization approach (Prakasham et al., 2011). RSM is a collection of 
statistical techniques for designing experiments, building models, evaluating the effects of factors and 
searching for the optimum conditions (Kalil, 2000). With RSM, the experimental responses to design of 

397



experiments (DOEs) are fitted to a quadratic function (Imandi et al, 2008). These models assume that a 
second-order polynomial relation can reasonably approximate many of the fermentation system 
dynamics. ANN is a biologically inspired computational tool, simulating the connective behavior of 
natural neurons, and is used in modeling of various systems. Its power resides on its ability to learn 
from historical process data and to approximate linear and non linear functions. Genetic Algorithm,  is a 
globalized optimization search technique that  optimizes a given  function  over a particular  range,  and  
is based on the evolutionary methods of natural selection of the best individuals in a population 
(Goldberg, 1989). Both RSM and ANN strategies are suitable for process modeling, but differ in their 
extrapolation and interpolation capabilities on complex non linear fermentation processes, and thus 
potentially conflict in their predictive accuracy. 
This paper explores and compares  the capabilities of RSM and ANN in modelling the  production of 
citric acid  from Aspergillus niger  MCBN297 on factors of sucrose, magnesium sulfate heptahydrate 
(MgSO4.7H2O), potassium dihydrogen phosphate (KH2PO4), ammonium nitrate (NH4NO3), initial pH, 
temperature and process time. The optimized setpoints are further validated experimentally. 

2. Materials and Methods 

2.1 Response surface analysis and optimization 
The RSM Box–Behnken design was employed to evaluate the interaction of various factors on citric 
acid production using A. niger. Seven factors, namely concentrations of ammonium nitrate (NH4NO3), 
magnesium sulphate heptahydrate (MgSO4.7H2O), potassium dihydrogen phosphate (KH2PO4), 
sucrose, pH, and temperature and process time were considered (Table1). According to this design, 62 
experimental runs were generated.  Each run represents a unique combination of factors levels. For 
each experiment the total amount of citric acid produced was determined. The optimization method 
described by Myers and Montgomery (2002) was used by RSM optimization. 

Table 1: Independent variables associated with their coded and real values 

  Actual values of coded 
Independent variables Symbols -1 0 1 
Ammonium nitrate (g/L A 1 3 5 
Magnesium sulphate heptahydrate (g/L)   B 0.1 0.55 1 
pH C 2 4 6 
Potassium dihydrogen phosphate (g/L)     D 1 3 5 
Process time (hr) E 72 120 168 
Sucrose (g/L) F 100 190 280 
Temperature oC G 25 32.5 40 
 

2.2 Inoculum development and fermentation process 
A culture of Aspergillus niger MCBN297 was used. The spore suspension was prepared to inoculate 
150 ml aliquots of the fermentation medium dispensed in 250 mL Erlenmeyer �asks. All the physico-
chemical process parameters were set as specified in the Box-behnken design. 

2.3 Determination of Citric acid 
Citric acid concentration was estimated using pyridine–acetic anhydride method according to Marrier 
and Boulet (1958). The absorbance was measured on a spectrophotometer (420 nm) and citric acid 
contents of the sample were estimated with reference to the standard.

2.4 Artificial Neural network modeling 
The multi-layered perceptron (MLP) architecture of ANN approximates non-linear relationships existing 
between multiple causal (input) process variables and the corresponding dependent (output) variables 
(Nandi et al., 2001). Once an ANN-based process model with good generalization capability is 
constructed, its input space can be optimized to secure the optimal values of process variables. In the 
MLP architecture, data flow from input layer to the output layer, through the hidden layer. The input 
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layer introduces scaled input data to the hidden layers via the weights and bias which  are the network 
numerical parameters. The hidden layer sums up the weighted inputs and bias as follows: 

n

i
iiWXsum

1
 (1) 

wi  are  the connections weights, xi are the input parameters,  is the bias. The weighted inputs are 
passed through the activated function to the output layer as: 

sume
sumf

1
1

 (2) 

The neurons in the output layer produce an output based on a similar procedure as the hidden layer. In 
the training phase, an error value is produced based on the difference between the predicted network 
output and the experimental value. 
Experimental data generated from Box–Behnken design were used to construct the ANN module. The 
idea was to use data that are statistically well distributed in the input search window.  A total number of 
62 experimental data were divided into two sets, 52 for training and 10 for validation. A feedforward 
multiplayer perceptron was structured on easyNN software with 7 inputs, 1 hidden layer and 1 output 
layer given a topology of 7:5:1 (Figure.2) which refers to the number of inputs, neurons in the hidden 
and output layers. The input vector was made up of concentrations of ammonium nitrate (NH4NO3), 
magnesium sulphate heptahydrate (MgSO4.7H2O), potassium dihydrogen phosphate (KH2PO4), 
sucrose, pH, temperature and process time, while citric acid concentration was the output. The log-
sigmoid and linear transfer functions were used for the hidden and output layers respectively.

3. 3.  Results and Discussion 

3.1 Response Surface Methodology (RSM) modeling 
The obtained regression model was tested for statistical significance and adequacy using the Analysis 
of Variance (ANOVA). The mathematical relations used    to determine the estimators of ANOVA have 
been described in literature of DoE and RSM by Myers and Montgomery (2002). 
The F-value is obtained as ratio of the mean square regression and mean square residual. The Model 
F-value of 2.00 implies the model is significant. This implies that this model could be used to navigate 
the optimization search space for citric acid with regard to the factors under consideration. 
The ANOVA coefficient of determination R2 is about 0.7290, thus indicating that 72.9 % of the observed 
variation in citric acid production can be accounted for by the model. The adjusted R2 is 0.3642. 
The "Lack of Fit F-value" of 1.28 implies that, the Lack of Fit is not significant relative to the pure error. 
A non-significant lack of fit is desirable, since a fitting model is being sought for. A high value of the 
correlation coefficient (R=0.851) suggests an acceptable correlation between the predicted values and 
the experimental results. 
For the coefficient terms of the model, the values of "Prob > F" less than 0.0500 indicate that the  
model terms are significant. In this case A2, B2, C2, E2, F2 are significant model terms. Values greater 
than 0.1000 indicate the model terms are not too significant. Thus a possible reduced quadratic model, 
including terms required to support the hierarchy could be: 
 

Citric acid = 1.77 + 0.12° + 0.012B - 0.26C + 0.036D + 0.076E 0.13F + 0.12G + 0.63A2 + 
0.67B2 + 0.50C2 + 0.99E2 + 0.39F2 (3) 

With regard to the linear effect of  variables, the low probability values of the coefficient of pH (0.06) 
makes  its first order effect very significant,  meaning that the production of citric acid would be affected 
directly by the change in pH value in the environment according to this model. In the decreasing order, 
is NH4NO3, temperature, sucrose, process time, KH2PO4 and MgSO4·7H2O. 
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The quadratic main effects of process time, MgSO4·7H2O, NH4NO3, pH, Sucrose and KH2PO4 with p 
values < 0.0001, 0.0011, 0.0018, 0.0106, 0.036 and 0.05 respectively are more pronounced than those 
of linear effects of the parameters considered. These data suggest that any minor change in these 
variables from their median level (coded) values may cause a second order positive or negative shift in 
the production of citric acid. Thus, a change in setpoint values of these variables with a relatively higher 
magnitude must be monitored towards ensuring an increase in  citric acid production. 
The following interaction effects were considered based on P-values. These are sucrose and NH4NO3, 
MgSO4·7H2O and NH4NO3, KH2PO4 and MgSO4·7H2O then KH2PO4 and NH4NO3 with P-values of  
0.05, 0.11, 0.16  and 0.29 respectively. The three dimensional response surface and contour lines-
maps computed by means of response surface model are shown in Figures 1.a-d, revealing the 
predicted effect of factors interaction on the production. Figure 1.a shows the influence of sucrose and 
NH4NO3 on citric acid production while maintaining other parameters at their median values. It reveals 
that with a concentration of NH4NO3 ( >4g/L), an increase in sucrose concentration from 100 to 280 g/L 
leads to an increase in citric acid production. The interaction between MgSO4.7H2O and NH4NO3, in 
Figure 1.b shows a high production of citric acid at NH4NO3 concentration >3 g/L and MgSO4.·7H2O 
concentration > 0.7 g/L. The response surface of the interaction between KH2PO4 and MgSO4·7H2O   
shows that at high values of MgSO4·7H2O (> 0.6) and  low values of  KH2PO4 (< 2), or  low values of 
MgSO4·7H2O (< 0.4) and high concentration of KH2PO4 (> 3.5) there is an increase in citric acid 
production (Figure 1.c). In Figure 1.d, there is high positive interaction effect when KH2PO4 and 
NH4NO3 concentrations exceed 4g/L for both factors.

a) Interaction of sucrose and NH4NO3,                              b) Interaction of MgSO4.7H2O and NH4NO3     

c) Interaction of  KH2PO4  and MgSO4.7H2O                       d) Interaction of  KH2PO4  and NH4NO3  

Figure 1: Three dimensional response surfaces and contour lines-maps showing parameter 
interactions 
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3.2 Artificial Neural Network model 
The Network was trained using the implemented Levenberg-Marquardt algorithm or backpropagation 
method (Costa, 2007) (Figure.3). The learning rate was set at 0.6 and the momentum at 0.8. With this 
algorithm, the training was carried out by adjusting the weight connections between neurons with the 
aim of reducing the Mean Square Error (MSE) between the predicted and the experimental outputs 
below an acceptable threshold, thus minimizing the performance of MSE function. A successful training 
was achieved after 57,000 cycles with MSE validating error of 0.05, a MSE training error of 0.0039 and 
5 of 10 validating data were correct when rounded and 5 were within 10 % range. 
The input sensitivity shows how much citric acid production changes when the inputs are varied within 
the experimental range.  The inputs were all set to the median values and then each in turn was varied 
from the lowest to the highest value. In decreasing order of sensitivity was, sucrose, ammonium nitrate, 
temperature, pH, potassium dihydrogen phosphate, magnesium sulphate heptahydrate and process 
time with a sensitivity of 0.84, 0.36, 0.29,0.25,0.24,0.11 and 0.09 respectively. These observations 
imply that citric acid production by Aspergillus niger will be greatly influenced by sucrose, ammonium 
nitrate concentrations and process time. Papagianni et al. (2005) reported that in the production of 
citric acid from inhibition of glycolytic pathway, ammonium was highly appositive effectors that prevent 
the feedback repression caused by fructokinase gene on the complete oxidation of sugars in A. niger. 

Figure 2:  Artificial Neural Network topology of 7:5:1       Figure 3:  ANN training flowchart.

3.3 Optimization using Genetic algorithm and artificial neural network 
To this end, each medium profile was referred to as (chromosome). The elements of the medium were 
the concentrations of ammonium nitrate, magnesium sulphate, pH, potassium dihydrogen, process 
time, sucrose and temperature, all refer to as genes. The search range was bound within the same 
range used for RSM design for all parameters. The generation size, parent size, mutation rate and 
crossover rate were set at 100, 20 %, 20 % and 60 % respectively. With these settings, 100 different 
media profiles were produced for generation G1. The performance value of each of these media for 
citric acid production was determined using the developed ANN model. To produce the next generation 
(G2), few best substrate profiles from G1 were selected, and then genetic operations were performed 
to produce 100 different substrate profiles, which were in turn evaluated using ANN. The performance 
value increased from one generation to another until the stopping criterium was met. 

3.4 Comparative validation of optimum process conditions as determined by ANN and RSM 
Experimental validation was carried out on four optimized media for citric acid production, two from 
each model. These evaluations yielded exciting insights.  
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For two ANN optimized media with predicted production of 4.69 g/L each, an experimental evaluation 
of these media  showed 6.65 and 6.68 g/L respectively, values higher than expected.  Similarly, for two 
RSM optimized media, with predicted production of 7.19 and 7.04 g/L, experimental evaluation showed 
2.40 and 3.53 g/L respectively, exceedingly below RSM expectation. Thus ANN predicted optimum 
media emerged with highest observed experimental citric acid production, with values above 
expectation. It should be noted that the experimenter did not have prior knowledge of models 
predictions. These observations raise the suggestion that ANN derived models are more accurate in 
approximating the dynamics of microbial fermentation processes.The relatively low predictive accuracy 
exhibited by the RSM model in this work, encapsulates the inability of this modeling strategy (although 
mostly used) to approximate the non linear dynamic nature of fermentation processes, being limited by 
its second-order polynomial structure. The excellent predictive accuracy of ANN is accounted by the 
fact that   this class of models uses transfer functions in the hidden and output layers to approximate 
complex non-linearities in systems, thus capturing the non linear behavior in bioprocess dynamics, 
whereas the RSM relies on the quadratic polynomial function. ANN combined to GA are more efficient 
in navigating the optimization search space for fermentation research and development 
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