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The quantitative prediction of solute transport presents a great interest in many fields
where numerical modelling of solute transport through heterogeneous porous media
may be regarded as an efficient tool. In the present study, numerical experiments of a
1D model were performed by means of a method based on the Finite Volume (FV)
scheme using operator splitting method to solve transport and chemistry equations,
separately at each time step.

The reliability of the method is assessed by comparing the obtained results with the one-
dimensional analytical solution and experimental data reported in the literature and an
excellent agreement between the different sets of values was obtained.

1. Introduction

The simulation of reactive solute transport in heterogeneous porous media is of
importance in various areas of research and industry. Modeling reactive transport needs
the resolution of both transport and the chemistry equations. This work deals with
numerical method for solving the coupled problem. The transport of reactive solute in
porous media is described by partial differential equation of convection-diffusion type
and is solved using Finite Volume (FV) method based on operator splitting scheme,
where each part are solved separately (Carrayrou et al., 2004) with different time step
discretizations for the convective and dispersive parts. Specifically, the dispersive term
should be treated implicitly, and the convective term is better handled explicitly. The
splitting scheme works by tacking several small time steps of convection, controlled by
a CFL condition, within a large time step of dispersion. The scheme has been shown to
be unconditionally stable, and has a good behavior in convection-dominated situations
(Amir and Kern, 2010). In the literature, two types of methods have been described to
simulate the coupled problem: the Sequential Approaches (SA) (Yeh and Tripathi,
1991) which decomposes the full system into sub problems of transport and reaction
ones and the Global Approach (GA) (Krautle and Knaber, 2007) which solves
simultaneously the whole system. In the present work a sequential method is adopted
and the fixed point is used for solving the nonlinear system at each time step.

2. Reactive Transport Equation

In this section, the transport of reactive solute in a single phase flow through a
heterogeneous porous media is considered. The solute may react in the phase and with
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the porous matrix. The mathematical model describing the transport in 1D is given by
the following convection-dispersion equation (Bear and Verruijt, 1982):

a)%+i —D%+ucj+(l—a))a—F=O, O<x<L, O<t<T (D
ot Ox Ox ot

where ¢ is the solute concentration, @ the porosity, D the longitudinal dispersion
coefficient, u the velocity and F the solute concentration on the solid phase.

It should be noted that a local fluid-solid equilibrium is assumed, justifying the used
present form of Equation 1.

The initial condition is c(x, 0) =0 and the boundary conditions are a Dirichlet condition

¢ (0, t) = ¢; at the inlet (x=0) and zero dispersive flux Oc/Ox = 0 at the outlet (x=L).
For the discretization step, a cell-centered finite-volume scheme is used (Eymard et al.,

2000) where the domain [0, L] is divided into N intervals [x,_,,,,X,,,,,] of length h;,
where X,,,=0, X,,,,, = L, x; the center of element i and ¢; the approximate solution
in the element i. The flux @(x,t) =—D0c/0x +uc is made of a diffusive flux

@, =—DO0c/ Ox and a convective flux @, =uc .

Integrating Equation 1 over a cell ]xl._l 125 Xi41/2 [, leads to the following:
dc, dF,
w,h, d_tl +(1-o)h, dtl t @i T Peinn = Paiciin ~ Peicryn = 0 ()

The dispersive and the convective fluxes need values for the dispersion coefficient and

velocity and one can write: @, ,.,,, =—=D,,,,,(¢,.; =€)/ D)5,

Peivirn =UinC; With By =(hy +hi+1)/2 s Dy =2DD,

i+1

/(Z)z + Dz'+1) and

Uiy = 21

M, /(u, +u,,,) for heterogeneous porous media.

At is the time step used to discretize the time interval [0, T] and Cl." the value

ofc, (nAt).

To solve Equation 2 a splitting technique (Mazzia et al., 2000) was adopted that enables
the use of different spatial and temporal approximations for different transport processes
(convection and dispersion) and hence avoiding problems associated with numerical
dispersion. The dispersive term should be treated implicitly, and the convective term is
better handled explicitly.

2.1. Convection step
The dispersion time step [t,, t,+] is divided into M time steps of convection
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At. = [tam, tam+1], where m=0,..., M-1. Cin’m is defined as an approximation of ¢ at time

t*™. Equation 1 simplifies as follows: a)@ + i(uc) +(1- w)é_F =0
ot 0Ox ot

Integrating this equation over an element i using Euler’s explicit scheme gives:

n,m n,0

U, . At M1 U, At M-1 1-w, ( )
_ B i+1/2 4 z n,m i-1/2 c 2 : n,m i n+l n
arEaT w.h me it w.h o€t T w bk
i iTti .

1

This step has a Courant-Friedrichs-Lewy (CFL) restriction that takes the
form CFL = uAt, (wmaxh,)<1. The splitting scheme works by taking several small

time steps of convection, controlled by a CFL condition.

2.1 Dispersion step
M, o . . 1.
When C,.n is obtained in convection step after M time steps c,.nJr is calculated and

Equation 1 becomes: a)@ + o0 D%j =0
ot Ox Ox

The integration of this equation over an element i using implicit scheme gives:

D. D, D, D. .
(——’”2 Az‘jciln+1 +(a)ihi U Ay L2 Az‘jci"+1 —(—””2 Atjcm" "=k,

i-1/2 i+1/2 i-1/2 i+1/2

3. Solution of the Coupled Problem
The final discrete coupled system can be written as:
¢ ™ =W (¢",F",F"") for transport and F"" =W¥.(c"") for chemistry. This

non nonlinear system can be solved by various methods where the classical way is
based on a fixed-point method (Carrayrou et al., 2004). Recently, more global
approaches have been used (Krautle and Knaber, 2007). In this work, results are
presented for a fixed-point method.

Assuming that ¢”, F" are known (initials conditions), F*""* = F" is initialized, and an
iteration corresponding to the step number k is as follows:

L+l
1. Compute ¢ """ = LPT(C",Fn,FnH,k)

2. Compute F""+ = Y, ("
3. Set k=k+1 and go back to 1 unless the norm ”F Lk g M’k” s small

enough and the iterative is halted.
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To assess the obtained results, a comparison with the analytical solution and
experimental data reported in Katia (2005) for inert and reactive transport respectively,
was performed.

4. Numerical Results

4.1 Transport of an inert solute

In this section, inert transport is considered and the concentration profile is compared
with the corresponding analytical concentration given by (Ogata and Banks, 1961) as
follows:

c(x,t)zo‘5 erfe x—ut/o +exp(ﬂ)erfc X+ut /o 3)
c, 2D t/w D 2D t/w

1

where erfc is the complementary error function.
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Figure 1: Comparison between analytical and numerical solutions.

Figure la shows that for CFL values close to unity, the numerical and analytical
solutions are nearly confounded. Also to investigate the influence of the splitting factor
M, values of 5 and 10 were tested and the results of Figures 1b & c clearly show that
this parameter has not a great influence, the small deviations between the two curves
may be just due to splitting errors.

4.2 Reactive transport

In the experimental work of Katia (2005), the adsorption of copper ions onto glass balls
was considered. For this purpose, a column in Altuglas of S5cm in diameter and 100 cm
in height is filled with these balls, leading to a mean porosity value of 0.31. A solution
of copper is injected and the ions concentration was measured by spectrophotometry.
The results indicated that the adsorption isotherm of the copper onto glass balls was best

represented by Freundlich equation (F = k,.c"), where the chemical reaction

constant k, is equal to 5.7 and the exponent n which describes the adsorption
intensity takes the value of 0.487.
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The study of the adsorption in dynamic mode was made according to the flowrate, for a
single installed capacity (9 meq) and a single concentration (9.10°M).

Figure 2 shows the copper concentration at the exit of the column, measured
experimentally whereas Figures 2b and 2c present results obtained numerically, for
various BE values ( volume of solution got back in mL/capacity installed in meq). It can
clearly be seen that the agreement between the experimental values and the results
obtained from the model is reasonable. We can also see that when we act on the
dispersion by reducing, the agreement is greatly improved and this confirms the

reliability of the model.
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Figure 2: Breakthrough curve (function of volume) of Cu’" for different rates.

Figure 3, shows the breakthrough curves, for both cases with and without adsorption.

These curves enable the calculation of the breakthrough time which is a relevant

parameter  corresponding to the necessary time for the medium

saturation (0.95>< c/ Cl.). From the curve of Figure 3b, it can be seen that a low
adsorption is shown, since there is no great difference between both cases (with and
without adsorption). This confirms the results of Katia (2005) where in fact the glass
had low copper retention (retardation factor between 1.26 and 1.37).
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Figure 3: Breakthrough curve of Cu’" for different rates (D=2.88 107 m’/h).
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5. Conclusions

In this study the reactive transport of solute in porous media was performed
numerically. For this purpose, a calculation code was developed under Matlab
environment to solve the corresponding model equations. The calculations were
performed on 1D case and the results were compared to the reported experimental data,
in order to assess the model. This latter has shown great capabilities to handle this
complex physical problem. However it needs refinements in order to take into account
heterogeneity and other factors like physico-chemical interactions.

Finally, it can be recommended to extend the transport model to 3D case and to
introduce dissolution-precipitation, kinetic reactions.
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