
937
CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010

Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov

Copyright © 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791

DOI: 10.3303/CET1021157

Please cite this article as: Smidla J., and Heckl I., (2010), S-graph based parallel algorithm to the scheduling of multipurpose batch

plants, Chemical Engineering Transactions, 21, 937-942 DOI: DOI: 10.3303/CET1021157

S-graph Based Scheduling Method for Parallel

Architecture

J. Smidla, Istvan Heckl
*

Department of Computer Science and Systems Technology, FIT, University of

Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary

heckl@dcs.uni-pannon.hu

The S-graph framework introduced by Sanmarti et al. (1998), originally developed for

single processor, is proved to be an effective tool for batch process scheduling. The

basic algorithm of the framework follows branch-and-bound strategy that provides an

opportunity for parallelization. Nowadays, multi-core processors are available even in

personal computers, thus, parallel algorithms become more important and useful in

practice.

Two types of parallel scheduling algorithms are introduced here. In the first one, each

processor considers the entire search space, while in the second one, some processors

perform a look-ahead strategy for sharpening the bound.

The proposed algorithms are effective in practice, for some examples the so called

super-linearity occurs, i.e., for n processor system, the running time can be less than the

n-th fraction of the time required by a single processor.

1. Introduction

In present work, multipurpose batch plants are considered with non-intermediate storage

policy (NIS). The recipe specifies the ordering of the tasks for the related product. The

schedule of an equipment unit determines the tasks to be performed by that unit, the

processing order of these tasks, and the timing information, as well. The scheduling

problem aims to find the optimal schedule, usually in terms of maximizing the profit or

minimizing the time required to perform the schedule (i.e., the makespan).

One of the earliest representation tools for scheduling problems is the State-Task

Network (STN) introduced by Kondili et al. (1988). STN is a directed graph with two

types of distinctive nodes. The materials are the states represented by circles, and the

operations are the tasks represented by rectangles. When a state is consumed or

produced by an operation an arc is drawn between them. Pantelides (1994) extended the

STN to Resource-Task Network (RTN), which complements the STN with resource

representation.

938

2. S-graph representation

1

S1

2

S2
5

S5
3

S3

4

S4

6

S6
12

5

10

6

4

12 11
A

7

S7

8

S8

9

S9

10

S10
13

11

S11
14

7 12

12

7

18

9
B

C

Figure 1: S-graph representation of two recipes

The S-graph framework introduced by Sanmarti et al. (1998), and futher developed and

described by Sanmarti et al. (2001), Friedler (2010), is based on a new problem

formulation. A directed acyclic graph has been used for the problem representation and

in the solver algorithm. In this graph, unique nodes belong to tasks and products.

Formally, the S-graph is given by a triplet (N, A1, A2), where N is a finite set of nodes,

A1 and A2 are disjoint set of arcs. A1 contains the recipe-arcs, and A2 contains the

schedule-arcs, that are inserted to the graph by the optimization algorithm according to

the storage-policy. While the recipe-arcs denotes the order of tasks of one product, the

schedule-arcs represents the scheduling of different equipment units. Moreover, a

nonnegative value c(i, j) denotes the weight of arc from node i to j. This weight means

that the task j starts at least c(i, j) time unit later than task i. For example, in Figure 1,

c(1, 2) = 5, i.e., task 2 starts at least 5 time units after the start of task 1. Figure 1

contains only recipe-arcs termed recipe-graph. In general, several equipment units are

able to perform a certain task, however, in the solution exactly one equipment unit is

assigned to each task. Formally, set Si contains the equipment units which can be

assigned to task i in the recipe. The scheduling algorithm assigns an equipment unit to

each task from a given set of equipment units. This graph is termed schedule-graph.

When the intermediate product can be freely stored in a predetermined storage, the

schedule arcs are represented in the following manner: If equipment unit e performs

task i and consequently task j then the schedule arc is inserted from task i to task j with

weight pij, where pij is the processing time of equipment unit e on task i. Equipment unit

e can start task j immediately after task i is finished because the intermediate product

can be unloaded and stored in a designated storage.

Since in NIS policy there is no intermediate storage, the intermediate product must be

stored in the actual equipment unit until the product is loaded into the subsequent

equipment unit. In Figure 2, equipment unit E1 performs task 1, after it continues the

work with task 8. The schedule-arc starts at task 2 because E1 can only perform the next

939

task, when the result of task 1 has been loaded into the equipment unit which performs

task 2. If the insertion of new scheduling arc created a cycle in the graph then it would

represent an infeasible scheduling. Thus, this graph has to be dropped.

1

E1

2

S2

3

S3
10

4

S4

5

S5

6

E1
11

7

E1

8

S8

9

S9
12

8 10 4

3 7 9

12

9 18

A

B

C

Figure 2: S-graph representation of task sequence 1-6-7 for equipment unit E1 with NIS

policy

The scheduling algorithm for makespan minimization is based on the branch-and-bound

(B&B) framework. At the beginning, variable current_best is infinite. Each node of the

B&B tree corresponds to a subproblem, i.e., an S-graph defining a partial schedule. In a

branching step, the children of the current problem are generated by extending the

partial schedule of this problem. The algorithm selects an equipment unit (e) and the

next possible task of unit e is specified. The last task of equipment unit e is different in

each child problem.

The bounding function calculates the longest path in the graph or solves an LP model. If

the graph corresponding to a node of the B&B tree contains a cycle or its bound is not

better than current_best are dropped. When a feasible solution is founded, its value

updates the current_best variable. Finally, the optimal schedule is obtained.

3. Parallel branch-and-bound

Parallel branch-and-bound algorithms are classified into three groups in the literature

(Gendron and Crainic, 1994). In group 1, parallelization is performed inside of a

branch-and-bound node. Algorithms in group 2 build the branch-and-bound tree in

parallel: each processor works on the same tree but on different sub-problems. Finally,

algorithms in group 3 generate several branch-and-bound trees, where the processors

apply different methods. The two proposed parallel scheduling algorithms for makespan

minimization belong to group 2.

Algorithm 1. At the beginning of the optimization, processor 1 generates the children of

the root problem. These problems and their descendant problems are assigned to

processor 1, thus, only initially processor 1 is expected to perform operations on them.

940

If no problem is assigned to a processor, e.g., processor 2 (which in the case initially)

then this processor requests problems to be solved. If there are processors that have

unsolved problems, then one of them assigns an unsolved problem to the idle processor.

If all of the processors become idle, the algorithm terminates.

The key point of this approach is the common current_best value: if a processor finds a

solution, it updates the current_best, and the other processors prune nodes according to

the updated current_best.

Algorithm 2 takes an effort to improve the efficacy of searching of the optimal solution

with a modification of algorithm 1: some processors consider a supposed upper bound,

LO, which is lower than the actual current_best. If the bound of a node is not better than

the current_best, it is pruned. If the bound of a node is between the current_best and

LO, the algorithm keeps it in the list of open problems (i.e., it is neither pruned nor its

child problems are generated). Finally, if the bound is lower than LO then the child

problems are generated. When there is no solution with objective value better than LO,

the LO value is increased such that the new value of LO will be the average of its

original value and current_best, and the child problems in the open problem list are

reexamined. When a new solution, better then LO is founded, the algorithm deletes the

above-mentioned child problems from the list of open problems.

Figure 3: The processors build the B&B tree in parallel

4. Illustrative example

The first scheduling method has been tested on a problem introduced in Voudouris and

Grossmann (1996). Table 1 shows the recipe of the scheduling problem.

941

Table 1: Recipe of literature example by Voudouris and Grossmann (1996)

 Product A Product B Product C Product D

Task Eq. Time [h] Eq. Time [h] Eq. Time [h] Eq. Time [h]

1 E1 8 E1 7 E2 6 E2 4

2 E4 5 E3 3 E4 9 E3 6

3 E5 3 E5 4 E5 3 E5 4

Our computations have been performed on a server with four Xeon E5400 2.83 GHz

processors and 1 GB RAM. The testing environment was a 64 bit Gentoo Linux. Table

2 contains ten test cases, and shows the batch numbers in different tests, and the number

of processors used. Each test has been performed 10 times and the table shows the

average running times.

T(p) denotes the running time with p processors for a given problem. The speedup is

denoted by Equation (1) and the efficiency by Equation (2):

() (1) / ()S p T T p

(1)

() () /E p S p p

(2)

Table 2: Running times and speedups with various numbers of processors

Batch numbers 1 processor 2 processors 4 processors

A B C D time [s] time [s] speedup time [s] speedup

5 5 5 4 7.68

2.34

3.27

3.15

2.43

 5 5 5 5 31.80

8.96

3.55

7.57

4.20

 6 5 5 5 19.72

4.85

4.06

4.43

4.45

 6 6 5 5 7.16

2.82

2.54

3.88

1.85

 6 6 6 5 136.76

36.59

3.74

26.64

5.13

 6 6 6 6 592.70

170.47

3.48

119.55

4.96

 7 6 6 6 319.66

78.22

4.09

59.26

5.39

 7 7 6 6 60.29

14.40

4.19

11.54

5.22

 7 7 7 6 2 545.28

652.38

3.90

467.97

5.44

 7 7 7 7 11 308.72

3 188.77

3.55

2 268.88

4.98

At some of these examples, the so-called super-linearity is observable. The speedup is

greater than the number of processors used, i.e., E(p) > 1. There are two different

explanations for this phenomenon. The first reason is that each processor uses its own

cache memory, thus, the multi-processor program uses more cache memory than the

sequential version. The second reason is that multiple processors may perform less

overall work than one single processor because in the former case more subproblem can

be pruned.

942

5. Conclusions

The formerly developed S-graph framework has been extended for multiple processors.

It consists of a graph based problem representation and a branch-and-bound algorithm.

The original scheduling algorithm has made parallel to exploit the benefits of the

parallel computer architectures.

The implemented algorithm can be used to solve large-scale problems more effectively

than the single processor. Occasionally, the proposed parallelization method leads to

super-linearity. The test results have demonstrated the importance of the new parallel

algorithm.

References

Friedler, F., 2010, Process integration, modelling and optimisation for energy saving

and pollution reduction, Applied Thermal Engineering, doi: 10.1016/

j.applthermaleng.2010.04.030.

Gendron, B. and Crainic, G. T., 1994, Parallel Branch-And-Bound Algorithms: Survey

and Synthesis, Operations Research 42, 1042-1066.

Grossmann, I. E. and Voudouris, V. T., 1996, MILP Model for Scheduling and Design

of a Special Class of Multipurpose Batch Plants, Computers & Chemical

Engineering 20, 1335-1360.

Kondili, C. E., Pantelides, C. C. and Sargent, H. R., 1988, A General Algorithm for

Scheduling of Batch Operations, Proc. 3rd Intl. Symp. On Process Systems

Engineering 17, 62-75.

Pantelides, C. C., 1994, Unified frameworks for optimal process planning and

scheduling In: Rippin, D.W.T. and Hale, J., Editors, 1994. Proc. Second Conf. on

Foundations of Computer Aided Operations, CACHE Publications, pp. 253–274.

Pinto, M. J. and Grossmann, E. I., 1995, A Continuous Time Mixed Integer Linear

Programming Model for Short Term Scheduling of Multistage Batck Plants,

Industrial & Engineering Chemistry Research 34, 3037-3051.

Puigjaner, L., 1999, Handling the increasing complexity of detailed batch process

simulation and optimization, Computers and Chemical Engineering, 23S, S929-

S943.

Sanmarti, E., Friedler, F. and Puigjaner, L., 1998, Combinatorial technique for short

term scheduling of multipurpose batch plants based on schedule-graph

representation, Computers and Chemical Engineering 22, S847-S850.

Sanmarti, E., Holczinger, T., Puigjainer, L. and Friedler, F., 2002, Combinatorial

Framework for Effective Scheduling of Multipurpose Batch Plants, AIChE Journal

48(11), 2557-2570.

Shah, N., 1998, Single-and Multisite Planning and Scheduling: Current Status and

Future Challenges, Foundations of Computer-Aided Process Operations 94, 75-90.

