
511
CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010

Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov

Copyright © 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791

DOI: 10.3303/CET1021086

Please cite this article as: Kopanos G. M., Méndez A. and Puigjaner L., (2010), Solving scheduling problems in a multi-stage multi-

product batch pharmaceutical industry, Chemical Engineering Transactions, 21, 511-516 DOI: 10.3303/CET1021086

Solving Scheduling Problems in a Multi-stage Multi-

product Batch Pharmaceutical Industry

Georgios M. Kopanos
1
, Carlos A. Méndez

2
, and Luis Puigjaner

1
*

1
Department of Chemical Engineering, Universidad Politècnica de Catalunya, ETSEIB,

Av. Diagonal 647, 08028 Barcelona, Spain

luis.puigjaner@upc.edu
2
INTEC (UNL-CONICET), Argentina

An iterative two-stage decomposition solution strategy for solving real-world

scheduling problems in multi-stage multi-product batch plants is presented. The

proposed method has as a core a mixed integer mathematical model, and consists of a

constructive step, wherein a feasible and good solution is rapidly generated by

following some insertion criteria, and an improvement step, wherein the initial solution

is systematically enhanced by adopting several rescheduling techniques. The proposed

strategy performance is tested on a number of problem instances of a complicated real-

world multi-stage multi-product pharmaceuticals scheduling problem. High quality

solutions are reported within reasonable computational time.

1. Introduction

Since most industrial scheduling applications are commonly modelled as large-scale

combinatorial and complex optimization problems, they rarely can be solved to

optimality within a reasonable amount of computational time. Thus, in industrial

environments, computational time becomes an issue as important as the scheduling

problem itself; since industrial problems require optimal solutions, or at least close to

optimal, that can be reached in the shortest possible time. As a consequence, heuristic or

meta-heuristic techniques have been employed in order to reduce the inherent

computational burden. For instance, genetic algorithms, simulated annealing, tabu

search, particle swarm and ant colony optimization methods have been widely utilized

in a variety of scheduling problems. However, although the aforementioned methods

may generate solutions in short computational time, they cannot provide the reliable

behaviour required for hard restricted industrial environments.

In order to make rigorous mathematical-based methods more attractive for real-world

applications, increasing effort has been oriented towards the development of systematic

techniques that allow maintaining the number of decision variables at a reasonable low

level, even for large-scale problems. A reduced search space usually results in

manageable model sizes that often guarantee a more stable and predictable optimization

model behaviour. Furthermore, once the best possible feasible solution has been

generated in short time, systematic optimization-based methods can be employed to

512

gradually enhance a non-optimal solution with low computational effort. An apparent

drawback of these techniques is that optimality can no longer be assured. Nevertheless,

achieving rigorous optimality may not be specially significant in many industrial

scenarios mainly due to the following: (i) only a short time is usually available to

generate a solution and get it launched in the plant floor, (ii) optimality is easily lost

because of the highly dynamic nature of industrial environments, (iii) implementing the

schedule as such is constrained by the real process, and (iv) the real scheduling goals are

only partly taken into account since not all scheduling objectives can be quantified.

2. Mathematical Frameworks

Mixed Integer Programming (MIP) models constitute the core of the proposed solution

method. In this study, two different batch-oriented MIP formulations are used. Both

models are based on a continuous-time domain and utilize sequencing variables. The

first MIP model is based on the global precedence sequencing concept, and can be

found in Méndez and Cerdá (2003). Notice that global precedence formulations result in

models with small model size and they are computationally faster on average in

comparison with the other batch oriented frameworks (Méndez et al., 2006). However, a

drawback of global precedence models is that they cannot optimize objectives

containing sequence-dependent changeover issues (such as costs, etc.). For this reason,

a new unit-specific global-direct precedence framework, for scheduling multi-stage

multi-product batch plants, has been recently developed by Kopanos et al. (2009), as a

general mathematical formulation, which is able to cope with any objective function.

3. MIP-Based Solution Strategy

Although these mathematical formulations are able to describe a large number of

scheduling problems, in practice, they can only solve problems of modest size in a

reasonable computational time. Have in mind that the combinatorial complexity

strongly increases with the number of product orders considered thus precluding the

resolution of real-life scheduling problems by exact methods. Therefore, in this work we

propose a solution strategy for solving large-scale scheduling problems. The proposed

MIP-based solution strategy has as a core a MIP scheduling framework and consists of

two major procedure steps: (i) the constructive step, and (ii) the improvement step. The

objective in the constructive step is the generation of a feasible schedule in short amount

of time. Afterwards, this schedule is gradually improved by implementing some

elaborate rescheduling techniques, in the improvement step. As a sequence, the

generation of feasible and fairly good schedules in reasonable computational time is

favored. A description of the proposed solution strategy steps follows (see Figure 1).

3.1 Constructive step

The constructive step is performed in an iterative mode. A predefined number of

product orders are scheduled at each iteration with lower degrees of freedom; until all

product orders are finally scheduled. The number of orders used at each iteration should

be small enough to ensure the quick resolution of each iteration, and thus generating a

513

Figure 1: Representative scheme of the proposed MIP-based solution strategy.

feasible schedule in short time. In this study, it is proposed to insert (schedule) product

orders one-by-one, since it has been observed, after a series of experiments, that

insertion of a higher number of products per iteration: (i) do not guarantee a better

constructive step schedule, and (ii) it is more computationally expensive.

After each iteration, allocation and global sequencing binary variables for the previously

scheduled product orders are fixed in order to reduce the computational effort. In other

words, unit allocation decisions and relative sequencing relations of the already

scheduled product orders cannot be modified in the following iterations. However,

timing decisions may change thus permitting the insertion of new inserted product

orders among the previously scheduled product orders. When all product orders have

been inserted, a feasible schedule can be finally obtained in relatively short time.

3.2 Improvement step

In this step, the initial feasible schedule provided by the constructive step is further

improved through reordering and/or reassignment operations; in accordance with the

main rescheduling concepts of the work presented by Mendez and Cerdá (2003). The

improvement step, which follows a two-stage closed loop procedure, consists of the

reordering stage and the reinsertion stage, which are performed sequentially until no

improvement is observed.

3.2.1 Reordering stage

In this stage, unit allocation decisions are fixed. Reordering actions are iteratively

applied on the initial schedule, by solving a MIP model, until no further improvement is

observed. A full unit reordering tactic results impractical due to the large number of

batches and processing units in real-world industrial scheduling problems. Instead, the

alternative of limited reordering operations may usually improve the current schedule

with relatively low computational effort. It is common sense that there exists a strong

trade-off between the degrees of freedom and the solution time. In an industrial

environment, the scheduler should appropriately define the reordering tactic/limitations,

followed in this step, depending on the complexity of the scheduling problem. A local

514

reordering tactic is adopted in this study. Concretely, in an attempt to maintain

manageable model sizes, reordering of batches with their direct predecessor or

successor is only allowed. Keep in mind that considering the whole set of possible

sequences impacts drastically the computational performance of the reordering step.

Other less-limited reordering tactics could be also easily applied.

3.2.2 Reinsertion stage

The schedule of the reordering step constitutes the initial schedule in the reinsertion

stage. Here, unit allocation and relative sequencing decisions for a small number of

product orders are left free by the scheduler. Let refer to these product orders as

reinserted orders. Allocation and relative sequencing decisions, among the non-

reinserted orders, are fixed. In other words, some products orders are extracted from the

current schedule, and they are reinserted aiming at improving the actual schedule. Note

that the reinsertion stage is quite similar to the last iteration of the constructive step.

Since our scope is to propose a general standard algorithm for large-scale industrial

scheduling problems, we adopt the lowest number of reinsertion orders (i.e., one at a

time) in order to favor low solution times. However, the scheduler could set the number

of reinserted orders depending on the specific scheduling problem. In the standard

reinsertion stage, the number of iterations (reinsertions) equals the number of product

orders. The solutions of all reinserted orders (iterations) are compared, and the best one

is finally chosen as the solution of the reinsertion stage. Note that if the number of

product orders is too high, someone could have preferred to end the reinsertion stage

once a better solution (comparing it with the previous stage) is reached. That way is

saved computational time. If the best solution of this stage is better than the solution of

the reordering stage, the algorithm goes to the reordering stage again. Otherwise, the

solution algorithm terminates and reports the best solution found.

4. Pharmaceutical Production Process

In the current study, the short-term scheduling problem of a considerably high number

of multistage product orders (30 to 60) in the 17 processing units of the pharmaceuticals

production plant is addressed. The production process has 6 processing stages. Some

products bypass the third processing stage. Sequence-dependent setup times are also

explicitly considered thus increasing the complexity of the problem. An interesting

feature of the production process is that in some processing stages changeover times are

higher than the processing times.

5. Case Study: Results and Discussion

Twelve problem instances considering a different number of products have been solved:

(i) 30 product orders (168 batches), and (ii) 60 products (336 batches). Different storage

policies (Zero Wait (ZW), Unlimited Intermediate Storage (UIS)) and objective

functions (makespan (MK), weighted (WL) lateness, operating and changeover costs

(O&C)) have been also considered. A time limit of 1 CPU hr has been imposed on the

solution of every problem instance. All problem instances have been solved in a Dell

Inspiron 1520 2.0 GHz with 2GB RAM using CPLEX 11 via a GAMS 22.8 interface

(Brooke et al., 1998).

515

Table 1: Best schedules found within the predefined time limit (3600 CPU s).

problem

instance

objective

function
batches

storage

policy

1
st
-stage

solution

1
st
-stage

CPU s

 best

solution

total

CPU s

 impove-

 ment

I.01 MK 168 UIS 28.507 38 26.559 542 6.83%

I.02 MK 168 ZW 31.520 7 30.532 187 3.14%

I.03 MK 336 UIS 49.161 155 48.548 1502 1.25%

I.04 MK 336 ZW 58.104 106 56.061 1718 3.52%

I.05 WL 168 UIS 48.613 22 19.085 720 60.74%

I.06 WL 168 ZW 115.016 15 84.438 262 26.59%

I.07 WL 336 UIS 118.683 403 87.943 3600 25.90%

I.08 WL 336 ZW 629.672 356 515.876 1478 18.07%

I.09 O&C 168 UIS 66.158 94 62.910 3600 4.91%

I.10 O&C 168 ZW 72.318 58 70.209 3600 2.92%

I.11 O&C 336 UIS 119.759 1780 117.909 3600 1.54%

I.12 O&C 336 ZW 139.104 880 134.624 3600 3.22%

Table 1 presents the constructive step's solution (initial solution) and the best solution

found for every problem instance. The computational time for the constructive step (1
st
-

stage) as well as the total computation time is also included to the same table. Note that

feasible schedules are obtained in a short amount of time in most cases. Problem

instance I.11 is the most time-demanding problem instance since almost half a CPU hr

was needed in order to obtain a feasible solution. The remaining problem instances

reached a feasible solution in relatively low computational time; from some CPU s and

no more than 7 CPU min.

Note that the original un-decomposed MIP models were unable to solve even small

instances of the pharmaceuticals case study, thus highlighting the practical benefits of

our approach. It worth mentioning that all problem instances were also solved by the

original MIP models without setting a time limit. However, in all cases the MIP solver

terminated because memory capacity was exceeded.

A representative Gantt chart of the best schedule for problem instance I.12 is shown in

Figure 2 in order to provide the reader with a visual demonstration of the complexity of

the addressed problems.

6. Conclusions

The MIP-based solution strategy is able to quickly generate feasible solutions and then

gradually enhance these solutions. It was observed that the necessary computational

time to improve a given initial solution mainly depends on: (i) the total number of

batches to be scheduled, (ii) the objective function, (iii) the storage policy, and (iv) the

core mathematical model. Obviously, the lower the total number of bathes the faster the

problem is solved. It has been observed that the case studies considering ZW storage

policy are solved faster comparing them with the problem instances under UIS policy.

Finally, the mathematical model used depends on the optimization goal. Roughly

speaking, the more complicated the objective function the bigger the size of the model;

such is the case of minimizing operating and changeovers costs.

516

Figure 2. Best schedule for I.12 (60-product case: min. total operating and changeovers

costs under ZW policy).

Acknowledgements

Financial support received from the Spanish Ministerio de Ciencia e Innovación (FPU

grant and research projects DPI2006-05673 and DPI2009-09386) are gratefully

acknowledged. Funding from the European Commission (FEDER) is also appreciated.

Support received from AECID under Grant PCI-D/024726/09 is also gratefully

acknowledged.

References

Brooke, A., Kendrik, D., Meeraus, A., Raman, R. and Rosenthal, R. E., 1998, GAMS -

A User's Guide. GAMS Development Corporation, Washington, USA.

Kopanos, G. M., Laínez, J. M. and Puigjaner, L., 2009, An efficient mixed-integer

linear programming scheduling framework for addressing sequence-dependent setup

issues in batch plants, Industrial & Engineering Chemistry Research 48, 6346-6357.

Méndez, C. A. and Cerdá, J., 2003, Dynamic scheduling in multiproduct batch plants,

Computers and Chemical Engineering 27, 1247-1259.

Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjunkoski, I. and Fahl, M., 2006, Review:

State-of-the-art of optimization methods for short-term scheduling of batch

processes, Computers and Chemical Engineering 30, 913-946.

