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An iterative two-stage decomposition solution strategy for solving real-world 

scheduling problems in multi-stage multi-product batch plants is presented. The 

proposed method has as a core a mixed integer mathematical model, and consists of a 

constructive step, wherein a feasible and good solution is rapidly generated by 

following some insertion criteria, and an improvement step, wherein the initial solution 

is systematically enhanced by adopting several rescheduling techniques. The proposed 

strategy performance is tested on a number of problem instances of a complicated real-

world multi-stage multi-product pharmaceuticals scheduling problem. High quality 

solutions are reported within reasonable computational time. 

1. Introduction 

Since most industrial scheduling applications are commonly modelled as large-scale 

combinatorial and complex optimization problems, they rarely can be solved to 

optimality within a reasonable amount of computational time. Thus, in industrial 

environments, computational time becomes an issue as important as the scheduling 

problem itself; since industrial problems require optimal solutions, or at least close to 

optimal, that can be reached in the shortest possible time. As a consequence, heuristic or 

meta-heuristic techniques have been employed in order to reduce the inherent 

computational burden. For instance, genetic algorithms, simulated annealing, tabu 

search, particle swarm and ant colony optimization methods have been widely utilized 

in a variety of scheduling problems. However, although the aforementioned methods 

may generate solutions in short computational time, they cannot provide the reliable 

behaviour required for hard restricted industrial environments. 

In order to make rigorous mathematical-based methods more attractive for real-world 

applications, increasing effort has been oriented towards the development of systematic 

techniques that allow maintaining the number of decision variables at a reasonable low 

level, even for large-scale problems. A reduced search space usually results in 

manageable model sizes that often guarantee a more stable and predictable optimization 

model behaviour. Furthermore, once the best possible feasible solution has been 

generated in short time, systematic optimization-based methods can be employed to 
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gradually enhance a non-optimal solution with low computational effort. An apparent 

drawback of these techniques is that optimality can no longer be assured. Nevertheless, 

achieving rigorous optimality may not be specially significant in many industrial 

scenarios mainly due to the following: (i) only a short time is usually available to 

generate a solution and get it launched in the plant floor, (ii) optimality is easily lost 

because of the highly dynamic nature of industrial environments, (iii) implementing the 

schedule as such is constrained by the real process, and (iv) the real scheduling goals are 

only partly taken into account since not all scheduling objectives can be quantified. 

2. Mathematical Frameworks 

Mixed Integer Programming (MIP) models constitute the core of the proposed solution 

method. In this study, two different batch-oriented MIP formulations are used. Both 

models are based on a continuous-time domain and utilize sequencing variables. The 

first MIP model is based on the global precedence sequencing concept, and can be 

found in Méndez and Cerdá (2003). Notice that global precedence formulations result in 

models with small model size and they are computationally faster on average in 

comparison with the other batch oriented frameworks (Méndez et al., 2006). However, a 

drawback of global precedence models is that they cannot optimize objectives 

containing sequence-dependent changeover issues (such as costs, etc.). For this reason, 

a new unit-specific global-direct precedence framework, for scheduling multi-stage 

multi-product batch plants, has been recently developed by Kopanos et al. (2009), as a 

general mathematical formulation, which is able to cope with any objective function. 

3. MIP-Based Solution Strategy 

Although these mathematical formulations are able to describe a large number of 

scheduling problems, in practice, they can only solve problems of modest size in a 

reasonable computational time. Have in mind that the combinatorial complexity 

strongly increases with the number of product orders considered thus precluding the 

resolution of real-life scheduling problems by exact methods. Therefore, in this work we 

propose a solution strategy for solving large-scale scheduling problems. The proposed 

MIP-based solution strategy has as a core a MIP scheduling framework and consists of 

two major procedure steps: (i) the constructive step, and (ii) the improvement step. The 

objective in the constructive step is the generation of a feasible schedule in short amount 

of time. Afterwards, this schedule is gradually improved by implementing some 

elaborate rescheduling techniques, in the improvement step. As a sequence, the 

generation of feasible and fairly good schedules in reasonable computational time is 

favored. A description of the proposed solution strategy steps follows (see Figure 1). 

3.1 Constructive step 

The constructive step is performed in an iterative mode. A predefined number of 

product orders are scheduled at each iteration with lower degrees of freedom; until all 

product orders are finally scheduled. The number of orders used at each iteration should 

be small enough to ensure the quick resolution of each iteration, and thus generating a  
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Figure 1: Representative scheme of the proposed MIP-based solution strategy. 

feasible schedule in short time. In this study, it is proposed to insert (schedule) product 

orders one-by-one, since it has been observed, after a series of experiments, that 

insertion of a higher number of products per iteration: (i) do not guarantee a better 

constructive step schedule, and (ii) it is more computationally expensive. 

After each iteration, allocation and global sequencing binary variables for the previously 

scheduled product orders are fixed in order to reduce the computational effort. In other 

words, unit allocation decisions and relative sequencing relations of the already 

scheduled product orders cannot be modified in the following iterations. However, 

timing decisions may change thus permitting the insertion of new inserted product 

orders among the previously scheduled product orders. When all product orders have 

been inserted, a feasible schedule can be finally obtained in relatively short time. 

3.2 Improvement step 

In this step, the initial feasible schedule provided by the constructive step is further 

improved through reordering and/or reassignment operations; in accordance with the 

main rescheduling concepts of the work presented by Mendez and Cerdá (2003). The 

improvement step, which follows a two-stage closed loop procedure, consists of the 

reordering stage and the reinsertion stage, which are performed sequentially until no 

improvement is observed.  

3.2.1 Reordering stage 

In this stage, unit allocation decisions are fixed. Reordering actions are iteratively 

applied on the initial schedule, by solving a MIP model, until no further improvement is 

observed. A full unit reordering tactic results impractical due to the large number of 

batches and processing units in real-world industrial scheduling problems. Instead, the 

alternative of limited reordering operations may usually improve the current schedule 

with relatively low computational effort. It is common sense that there exists a strong 

trade-off between the degrees of freedom and the solution time. In an industrial 

environment, the scheduler should appropriately define the reordering tactic/limitations, 

followed in this step, depending on the complexity of the scheduling problem. A local 
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reordering tactic is adopted in this study. Concretely, in an attempt to maintain 

manageable model sizes, reordering of batches with their direct predecessor or 

successor is only allowed. Keep in mind that considering the whole set of possible 

sequences impacts drastically the computational performance of the reordering step. 

Other less-limited reordering tactics could be also easily applied.  

3.2.2 Reinsertion stage 

The schedule of the reordering step constitutes the initial schedule in the reinsertion 

stage. Here, unit allocation and relative sequencing decisions for a small number of 

product orders are left free by the scheduler. Let refer to these product orders as 

reinserted orders. Allocation and relative sequencing decisions, among the non-

reinserted orders, are fixed. In other words, some products orders are extracted from the 

current schedule, and they are reinserted aiming at improving the actual schedule. Note 

that the reinsertion stage is quite similar to the last iteration of the constructive step. 

Since our scope is to propose a general standard algorithm for large-scale industrial 

scheduling problems, we adopt the lowest number of reinsertion orders (i.e., one at a 

time) in order to favor low solution times. However, the scheduler could set the number 

of reinserted orders depending on the specific scheduling problem. In the standard 

reinsertion stage, the number of iterations (reinsertions) equals the number of product 

orders. The solutions of all reinserted orders (iterations) are compared, and the best one 

is finally chosen as the solution of the reinsertion stage. Note that if the number of 

product orders is too high, someone could have preferred to end the reinsertion stage 

once a better solution (comparing it with the previous stage) is reached. That way is 

saved computational time. If the best solution of this stage is better than the solution of 

the reordering stage, the algorithm goes to the reordering stage again. Otherwise, the 

solution algorithm terminates and reports the best solution found. 

4. Pharmaceutical Production Process 

In the current study, the short-term scheduling problem of a considerably high number 

of multistage product orders (30 to 60) in the 17 processing units of the pharmaceuticals 

production plant is addressed. The production process has 6 processing stages. Some 

products bypass the third processing stage. Sequence-dependent setup times are also 

explicitly considered thus increasing the complexity of the problem. An interesting 

feature of the production process is that in some processing stages changeover times are 

higher than the processing times.  

5. Case Study: Results and Discussion 

Twelve problem instances considering a different number of products have been solved: 

(i) 30 product orders (168 batches), and (ii) 60 products (336 batches). Different storage 

policies (Zero Wait (ZW), Unlimited Intermediate Storage (UIS)) and objective 

functions (makespan (MK), weighted (WL) lateness, operating and changeover costs 

(O&C)) have been also considered. A time limit of 1 CPU hr has been imposed on the 

solution of every problem instance. All problem instances have been solved in a Dell 

Inspiron 1520 2.0 GHz with 2GB RAM using CPLEX 11 via a GAMS 22.8 interface 

(Brooke et al., 1998). 
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Table 1: Best schedules found within the predefined time limit (3600 CPU s). 

problem 

instance 

objective 

function 
batches 

storage 

policy 

1
st
-stage 

solution 

1
st
-stage 

CPU s 

   best    

solution 

total 

CPU s   

 impove- 

 ment  

I.01 MK 168 UIS 28.507 38 26.559 542  6.83% 

I.02 MK 168 ZW 31.520 7 30.532 187  3.14% 

I.03 MK 336 UIS 49.161 155 48.548 1502  1.25% 

I.04 MK 336 ZW 58.104 106 56.061 1718  3.52% 

I.05 WL 168 UIS 48.613 22 19.085 720  60.74% 

I.06 WL 168 ZW 115.016 15 84.438 262  26.59% 

I.07 WL 336 UIS 118.683 403 87.943 3600  25.90% 

I.08 WL 336 ZW 629.672 356 515.876 1478  18.07% 

I.09 O&C 168 UIS 66.158 94 62.910 3600  4.91% 

I.10 O&C 168 ZW 72.318 58 70.209 3600  2.92% 

I.11 O&C 336 UIS 119.759 1780 117.909 3600  1.54% 

I.12 O&C 336 ZW 139.104 880 134.624 3600   3.22% 

 

Table 1 presents the constructive step's solution (initial solution) and the best solution 

found for every problem instance. The computational time for the constructive step (1
st
- 

stage) as well as the total computation time is also included to the same table. Note that 

feasible schedules are obtained in a short amount of time in most cases. Problem 

instance I.11 is the most time-demanding problem instance since almost half a CPU hr 

was needed in order to obtain a feasible solution. The remaining problem instances 

reached a feasible solution in relatively low computational time; from some CPU s and 

no more than 7 CPU min. 

Note that the original un-decomposed MIP models were unable to solve even small 

instances of the pharmaceuticals case study, thus highlighting the practical benefits of 

our approach. It worth mentioning that all problem instances were also solved by the 

original MIP models without setting a time limit. However, in all cases the MIP solver 

terminated because memory capacity was exceeded. 

A representative Gantt chart of the best schedule for problem instance I.12 is shown in 

Figure 2 in order to provide the reader with a visual demonstration of the complexity of 

the addressed problems. 

6. Conclusions 

The MIP-based solution strategy is able to quickly generate feasible solutions and then 

gradually enhance these solutions. It was observed that the necessary computational 

time to improve a given initial solution mainly depends on: (i) the total number of 

batches to be scheduled, (ii) the objective function, (iii) the storage policy, and (iv) the 

core mathematical model. Obviously, the lower the total number of bathes the faster the 

problem is solved. It has been observed that the case studies considering ZW storage 

policy are solved faster comparing them with the problem instances under UIS policy. 

Finally, the mathematical model used depends on the optimization goal. Roughly 

speaking, the more complicated the objective function the bigger the size of the model; 

such is the case of minimizing operating and changeovers costs. 



516 

 

 

Figure 2. Best schedule for I.12 (60-product case: min. total operating and changeovers 

costs under ZW policy). 
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