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Due to the increase of economic competition, many refineries have tried to reduce
production cost in order to achieve higher rate of return. One way to improve energy
efficiency of the refinery having crude distillation units, high-energy-consuming units,
is recovering heat from hot product streams to preheat cold stream of crude by complex
heat exchanger networks (HENs). These HENs help reduce energy consumption at
crude furnaces and product coolers. They can be designed by optimization model or
stage model by Yee and Grossman (1990). The results of grassroots network design are
shown at different exchanger minimum temperature approaches (EMAT) between hot
and cold streams of 30°C, 25°C, 20°C, 15°C, and 10°C, which can save the energy of
furnaces and coolers to 15 %, 20%, 23%, 25%, and 29%, respectively, compared to
the existing one.

1. Introduction

Due to the increase of economic competition and environmental awareness movements,
many leading firms have tried to reduce production cost in order to achieve a higher rate
of return. This principle has been applied to many petroleum refinery businesses; oil
price has been increasing and the market has been extremely competitive. Because of
the current situation the efficient ways are demanded to improve the energy efficiency
of the plant. The crude distillation unit (CDU) is one of the largest energy-consuming
units in the refinery, having a complex heat exchanger network transferring heat from
hot product streams to the crude oil feed. By preheating the crude, this HENs reduces
fuel consumption in the crude furnace. Many technological developments in the oil
refineries also drives applied technology to improve CDU and HENs energy
performance, combined with the mathematical programming model for example, Linear
Programming (LP), Non-Linear Programming (NLP), Mixed Integer Linear
Programming (MILP), and Mixed Integer Non-Linear Programming (MINLP). For this
research, optimization model or stage model by Yee and Grossman (1990) are applied
to do the grassroots design of heat exchanger networks. The results of grassroots
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network design are shown at different EMAT with the energy consumption of
furnaces and coolers.

2. Stage model

The stage model is based on the stage-wise superstructure representation proposed by
Yee et al. (1990) . The structure is shown in Figure 1. Within each stage of
superstructure, possible exchanger between any pair of hot and cold streams can occur.
Heater and coolers are placed at the end of cold and hot streams, respectively.The
objective finction of the model is to minimize the duty of heater, cooler and number of
exchangers under the constraint functions of energy balance, thermodynamics, and
logical constraints.
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Figure 1. Two-stage model structure

The target temperatures and flow rate of hot and cold process streams are fixed and the
stage-model will design HEN into two stages (K1 and K2) with the minimum utility
usages and number of exchangers for fixed EMAT value. The constraints and objective
function of stage model are shown below.

Overall heat balance for each stream.

(TIN; - TOUT,)F; =X X qu+qcu; i €HP

keST jeCP
(TOUT, - TINj )F; =X X qu+ qhy, j eCP
keST ieHP
Heat balance at each stage.
(T — i1 JFI = Z qu ke ST, ie HP
jeCP
(k= Gk JEJ=Z qip ke ST, je HP
ieCP
Assignment of superstructure inlet temperatures.
TIN; = t;;
TIN; = t; nok+1
Feasibility of temperatures.
i Stk keST, ieHP
Lk <tk keST,jeCP
TOUT; £tinok+1 ieHP
TOUT; <15, jecP

Hot and cold utility load.
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t.xox11 ~TOUT) Fi = qeu;  ieHP

(TOUT}- t;,)) F;= qhu; JjeCP

Logical constraints.
ik - Qzp <0 ieHP, jeCP , keST
geu;j- Qzcu; <0 ieHP
qhu; - Q zhu; <0 ieCP

Zijk s Zeui, zh1t; = 0,1
Calculation of approach temperatures.

dt,jk < tig- Lik+ F(l- Zijk) keST, iEHP,jECP
dt,'jk+1 < likei- Lkl + F(l- Zijk ) kEST; iEHP,jECP
drcu; < tiNOK+1 = TOUTcy+ F(l- ZCu;) ieHP

dthu; < TOUTyu—t;,,+ I'(1- zhu) jeCP

The temperature between the hot and cold streams at any point of any exchanger will be
at least EMAT:
diyr < EMAT
Objective function. The objective function is to minimize utility cost and capital cost
Min XCCUgqcu;+XCHUqhyy, + X X ECFyzp+XCFicuzeuy + X CFypu zhuy
ie HP JjeCP ieHP jeCP keST ieHP jeCP

3. Metodology

The grassroots design of HENs using the data from the refinery is generated following
below steps.

3.1 Simulation of the existing process:

The step is to generate the process condition in CDU by commercial simulation
software.

3.2 Stage model configuration:

The stage model is configurated by mathematical programming. The objective function
was to minimize process duties at heater, cooler and number of exchanger. The
variables were the possible match between hot and cold streams in each stage, the
EMAT was varied to find the alternative design of HENs. The EMAT was adjusted to
30°C, 25°C, 20°C, 15°C, and 10°C, resspectivly.

3.3 Flowsheet simplification:

This step is to simplify the existing process flow diagram for doing the grid diagram
consisting of hot and cold stream with exchangers. And the process streams will be used
for stage model to generate the grassroots design of HENS.

3.4 HEN design verification:

The grassroots design of HEN from the stage model will be verified by the process
simulation sorftware.

4. Result and Dicussion

The result of this work were reported in the simplified flowsheet and compared with the
existing HENS.

4.1 Simulation of the existing process:

For the simulation program the actual condition data was used as the input data to
simulate the existing unit (Figur 2.). The result shows total duties at furnace and coolers
were 105.2 MWatt and 100.8 MWatt, respectively.
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Figure 2. Existing HEN

4.2 Stage model configuration:
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The results of the stage model at EMAT = 30°C, 25°C, 20°C, 15°C, and 10°C, are the
grassroots design of HENs which can reduce the duties of furnace(QH) and coolers(QC)

as shown in Table 1.

Tablel. The result of grassroots design

Design EMAT (°C) N:r??:: ' Utilities (MWatt)
exchanger QH Saving (%) Qc Saving (%)

Base case 35 10 105.2 0 100.8 0
Alternative design 1 10 10 79.4 25 66.5 34
Alternative design 2 15 10 83.2 21 70.3 30
Alternative design 3 20 10 85.6 19 72.7 28
Alternative design 4 25 10 89.2 15 76.3 24
Alternative design 5 30 11 94.2 10 81.4 19

4.3 The grassroots design of HENs:

To compare the structure of grassroots design of HEN with the existing one, they are

shown in Figures 3- 8.
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Figure 3. Alternative design 1 with EMAT = 10 °C
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Figure 8. Existing design with EMAT = 35 °C

5. Conclusions

The results of grassroots network design were concluded at different EMAT of
30°C, 25°C, 20°C, 15°C, and 10°C, which can save the energy usage of furnaces and
coolers to 15 %, 20%, 23%, 25%, and 29%, respectively.

Nomenclature
HP = Set of Hot Process Streams F = heat capacity flow rate
CP = Set of Cold Process Streams U = overall heat transfer coefficient
ST = Set of Stage No. CF = fixed charge for exchangers
TIN = inlet temperature of stream TOUT= outlet temperature of stream
CCU = unit cost for cold utility CHU = unit cost of hot utility
B = exponent for area cost NOK = total number of stages
Q = upper bound for heat exchange T" = upper bound for temperature difference

dty = temperature approach for match ( i,j) at temperature location k

dtcu; = temperature approach for match of hot stream 7 and cold utility
dthu; = temperature approach for match of cold stream ; and hot utility

¢ = heat exchanged between hot process stream 7 and cold process stream j in stage k
gcu; = heat exchanged between hot stream i and cold utility

qhu; = heat exchanged between hot stream and cold stream j

1 = temperature of hot stream i at hot end of stage k

4« = temperature of cold stream j at hot end of stage k

zy = binary variable to denote existence of match (i,j) in stage k

zq = binary variable to denote that cold utility exchanges heat with stream i
zj; = binary variable to denote that hot utility exchanges heat with stream j
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