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Several papers published for the optimization of DMFC considering only the design
parameters like feed flow, temperature and methanol crossover. However, this paper
present a non liner programming (NLP) optimization with respect to the design and the
geometrical parameters of anode and cathode such as methanol concentration, current
density, power density, catalyst loading, catalyst layer, over potential, etc. The objective
function is to maximize the power output of DMFC. Optimization tool in Matlab and
Genetic algorithm (GA) are used to solve the algorithm. The obtained outputs were
verified with the experimental results.

1. Introduction

Interest in using direct methanol fuel cells (DMFC) to power portable equipment for
commercial application is relatively recent. DMFC can work at room temperature with
high energy density compared to other alcohol fuel and the construction is simple.
Thereby, it is a good candidate for the use of commercial electronics and micro devices.
Having a theoretical energy density of about 6080Whkg ', methanol stores about 10
times more energy than the best lithium-ion batteries.

Several works published in the field of optimization of DMFC. Notable among them
are Xu et al. (2005) developed the dynamic optimization for DMFC to provide a
constant feeding strategy that achieve the highest power density at given operating
condition conditions specified by a set current density. Rao and Rengaswamy (2006)
highlighted the presence of local optima and the multi-objective nature of the fuel cell
catalyst for design problem using a spherical agglomerate steady state model. Chen et
al. (2007) presented an optimization model for annual cost for a given power production
level. Secanell et al (2007) formulated a multi variable for optimization of PEM fuel
cell in order to maximize the current density at a given electrode voltage with respect to
electrode composition parameters using a gradient-based optimization algorithm. Ko et
al (2008) study a non-isothermal dynamic optimization model of direct methanol fuel
cells (DMFCs) and predicted their performance with an effective optimum-operating
strategy. However, all the research concentrated on the optimization of feed flow, power
out and current density neglecting the catalyst loading, catalyst layer, and channel layers
although this parameters are very significant in determining the cost and performance of
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the cell . Addition to the previous researches, this study will present a non linear
optimization with respect to the design and the geometrical parameters of anode and
cathode predicting the detail design parameters such as methanol concentration, current
density, power density, catalyst loading, catalyst layer, over potential for DMFC for
maximum power output. Although NLP approach is computationally more extensive, it
has been proven to be more robust and reliable method (Buouerouf & Biegler 1995;
Barbosa et al 2000; Itle et al 2004). The NLP problems in the study were solved using
optimization tools in MATLAB and genetic algorithm. The validation was done using
results from experiment.

2. Design Optimization

The objective function defined as to maximize the power output of DMFC:

Maximize f(X) =Py (1)
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Then, the objective function becomes;
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Subject to:

Inequality constraints for constraint function
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Equality constraints are derive from the shot cut design equation of DMFC model.
DeSign parameterS: Daa F) ioM,refa ioO,refa Ileaka IO) kp9 KI) KH’ Ra Rg

. . . eff eff
Design variables: Ar, T, X;, L, Uo, Uy, Dy, Dy, Dy, D, , kp . Ko, Cpi 5 Co,
Variables x; were find where i = 1-17
Xi = e Xy Mg, X3=My,Xy =K, X5 =Ko, X =lg, X7 =g, Xg =Ny
_ Il _ I _ _ _ _ _
Xg=Chy Xy =Cy.x; 1 =Cp  Xpp =My, X3 =my, Xy =L,, X;5=L,

X16 ~ Qa5 X17 T A,

3. Optimization

The optimization problem formulated above is solved using optimization toolbox in
Matlab. It was solved consideration as nonlinear programming (NLP). The estimation
of value x, obtained from Generic Algorithm (GA) in Matlab. For this study, the
optimization tool implemented the Sequential Quadratic Programming (SQP) method
assuming as sub-problem of a quadratic programming sub problem that can be solved
successively until convergence is achieved for the original problem. The method has an
advantage of finding the optimum design from an arbitrary initial design point and
typically requires fewer function and gradient evaluations compared to other methods
for constrained nonlinear optimization. Table 1 presents the design parameters for this
study.
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Table 1 Typical value design parameter

Symbol Value Unit Symbol Value Unit

D, 0.503x 10* (cm?s™) oy 0.35

oM. ref 0.763x 107 (A cm™) e 0.8

160, ref 3.189x10%  (Acm?) €a 03

CMref 0.001 (mol cm ™) €, 0.3

Cogret  021/(R,T) (molcm™) PRy 12.37 (gem™)
R 8.314 (Jmol 'K ™) Py 21.45 (gem™)
R, 82.06 (atm ecm® mol" K™  pc 1.9 (gem™)
k, 1.776 x 10°  (cm?s ' atm™) 2 2.8x10° (molm™)
F 96500 (Cmol ™) K 0.068 (Sem™)
K, 1.25 3 45 (cm® mol ™)
Ky 0.8 Dy 2.26

Ny 6 no 4

4. Results and Discussion

Table 2 present the results for this study. A case study of power = 9.6 mW was
considered in this study. The Design parameters from optimization results were
compared with the results from experiment and model. The voltage versus the current
density Tafel plot (also known as the polarization curve) was presented in Figure 1.
From the graph, clearly shows the model is comparable with experiments. It also
observed that the performance of DMFC was improved after the optimization by
improving the current density and voltage.
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Figure I Comparison of Experiment, Model and Optimization for 4 Molar of Methanol
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5. Conclusion

The main objective of this study, which is to predict the optimum detail design
parameters for DMFC were successfully achieved. The complex equations involved
have been simplified into matrix forms and solved using Matlab software and genetic
algorithm.

Table 2 Comparison of Generic Algorithm and Optimization Tool results.

Generic ~ Optimization

Parameter X Algorithm Tool Unit
Current Density 1 0.3399 0.34 mA cm™
Cathode Overpotential 2 0.22052 0.221 v
Anode Overpotential 3 0.48109 0.481 \Y
Rate Constant Methanol Oxidation 4 0.75621 0.756 s
Rate Constant Oxygen Reduction 5 0.30655 0.301 s
Oxygen Reduction Current Density 6 0.26699 0.267 A em?
Crossover Current Density 7 0.76846 0.768 A cm™
Methanol Flux 8  0.76619 0.766 mol.cm™s™!
Methanol Concentration at z, 9 0.66332 0.663 M
Methanol Concentration at z, 10 0.49114 0.491 M
Methanol Concentration 11 1.65037 1.65 M
Anode Catalyst Loading 12 0.11689 0.117 mg cm’™
Cathode Catalyst Loading 13 0.63584 0.636 mg cm™
Anode Catalyst Thickness 14 0.93563 0.936 mm
Cathode Catalyst Thickness 15 0.66053 0.661 mm
Specific thickness at anode layer 16  0.96773 0.968 mm’™’
Specific thickness at cathode layer 17  0.99937 0.992 mm’’
Power 9.65 9.65 mW
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Nomenclature
Symbol Symbol
active area per unit volume in K permeation constant of pressure
% ACL P induced convection
Cp Bulk methanol concentration equilibrium constant of methanol
) Ky between anode backing
oV methanol concentration layer/anode catalyst layer
. equilibrium constant of methanol
: K
Chref reference methanol concentration " between ACL/membranc
Co oxygen concentration L, ACL thickness
Cog oxygen concentration at CCL Ly ABL thickness
Copref reference oxygen concentration L. CCL thlcknes§ .
. Lyg cathode gas diffuser thickness
I methanol concentration at .
C o Ly membrane thickness
a position z; .
I methanol concentration at M, molecular weight of methanol
Ca position 7y R universal gas constant
off effective diffusivity of methanol R, Rg universal gas constant
D; in ACL T absolute temperature
off effective diffusivity of methanol U reference methanol oxidation
Dy, in ABL M open circuit voltage
off effective oxygen diffusivity in U reference oxygen reduction open
D¢ CCL ° circuit voltage
Dp, methanol diffusivity in membrane Ve cell \ioltagc .
oA anodic transfer coefficient
F Faraday constant ) .
. reference methanol oxidation Gc cathodic transfer coefficient
LoM, ref exchange current density Na electrode over-potential in anode
. reference oxygen reduction electrode over-potential in
I()O7ref : Ne thod
exchange current density cathode
Lean current density » proton conductivity in membrane
m hase
| - cross-over current density P . .
ca ) . & electro-osmotic drag coefficient
I oxygen reduction current density
° in cathode catalyst layer A constant in the rate expression
K potential dependent rate constant
of methanol oxidation
K potential dependent rate constant
C

of oxygen reduction
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