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This paper shows how the use of hybrid models (or gray box) based on equations of
state and neural networks can be consistent in predicting derived properties of fluids
like enthalpy, internal energy, entropy, Gibbs energy. That can be achieved through
neural network functionality on the parameters of the equations. A hybrid model
combines a rigorous and well-known model with an empirical and/or adaptable model.
These hybrid models are formulated to solve a multivariate optimization of the PVT
behavior for the alkane series, from methane to n-octane, in recognition of the
compressibility factor. The temperature dependence of b parameter improves the liquid
description. The derived properties show the appropriate behavior only shifted in
density and temperature without losing the structure of the equation of state.

Introduction

The use of artificial neural networks (ANN) in chemical engineering has been very
popular because they allow recognize systems highly nonlinear and multivariate, this is
useful when the knowledge of the system is null or the problem is too complex for
modelling with fundamental principles (Kahrs and Marquardt, 2008). Neural networks
generally are used as classifiers or as predictive model without any associated model
than the network itself (Sharma et al., 1999). Therefore a model based on neural
networks is considered universal if a complete database is considered to assure the
whole system is recognized. Many models based on neural networks are reported with
optimal configuration. Therefore in the literature are models of neural networks with
optimal structure for the case study, the variables reported besides the input and output
variables are the number of neurons in each layer and the value of the connections
between them. We have used hybrid neural network models with theoretical equations
of state (EoS) like SAFT and BACK (Bravo et al., 2002). However, the use of simpler
equations like cubic equation of state remains in common use. The motivation of the
hybrid models based on neural networks is to take advantage of the knowledge of the
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system reflected in the structure of the equation of state and use neural networks to
overcome its limitations.

Methodology

Cubic equations of state, starting with the van der Waals equation, contain two
parameters (a and b), where the parameter a is a measure of the forces of attraction
between molecules and b is a measure of the effective size of the molecule. Usually
these parameters are related to the critical properties of substances. We present only
results for van der Waals and SRK equations (Table 1) for being, the first equation
simpler and less accurate and the second because of its greater use.

Table 1. Expressions for van der Waals and Soave-Rredlich-Kwong equations of state.
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1.1 Derived properties

A residual property is a property expressed relative to its ideal gas value at the same
temperature and pressure. Where M is every molar property of the system and gi
denotes ideal gas.
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Table 2. Derived properties based on compressibility factor transformations.
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1.2 Neural networks

A neural network model is composed of processing units called neurons, which are
distributed in layers and a connectivity pattern determined by the type of neural
network. The neural network training is based on minimizing an energy function, which
is the square error between experimental and predicted variables for a set of input-
output data (Equation 2). More details on neural network fundamentals can be found

elsewhere (van der Smagt P. P., 1993).
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1.3 Hybrid or gray-box models
A gray box model consists of a rigorous model that provides the framework for the

description of the system and an empirical model that adjusts the parts that are not
considered in the rigorous model (Bravo et al., 2002; Simon et al., 2006; Kahrs and
Marquardt, 2008). In this paper, the gray box models consist of an equation of state and
one or more neural networks. The neural networks are designed to predict the
parameters a and b of the equation in the output layer with Temperature and Carbon
number in the alkane molecule as inputs to the networks. These parameters are needed,
in addition to temperature and density, to predict the compressibility factor Z(7,r;a,b).
The training of the gray box model is based on learning the Z behavior for the database
presented. The advantage of hybrid models on the empirical models is their ability to
apply interpolation and extrapolation, and the possible generality that can be obtained
from the correlation of the parameters obtained by neural networks. Several gray box
models were trained with different configuration of the number of neurons in the
intermediate layers and the output layer parameters (a, b) of the equation of state. The
number of neurons in the intermediate layers was varied based on experience among 8,
10 and 12. Each model was trained at least three times with various seeds for the
random number generator to initialize the values of the weights and thresholds of neural
networks.

Results

The hybrid models are developed to minimize the compressibility factor predicted by
the cubic equation of state through recognition by the neural network of the parameters
a and b of the equation, depending on the variables provided in the input layer.

Figure 1 shows the correlation among the experimental data with the prediction of van
der Waals equation of state and by ANN-vdW hybrid model. There is a considerable
improvement in prediction with the hybrid model. The interesting on implementing
hybrid models is the analysis of the functionality for the parameters from neural
networks and also to observe the consistency of the hybrid models in predicting the
derived properties.

Figure 2 shows the comparison between the parameters defined in Table 1 for vdW EoS
and those obtained by ANN-vdW model as function of temperature for each one of the
alkanes. There can be seen that the parameter ¢ has a tendency to grow with the number
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of carbon and decrease with temperature, this feature is similar to that used in other
cubic equation of state. Furthermore, the parameter b defined constant in the vdW EoS
has a decreasing dependency on temperature and increasing with the number of carbons
on molecule. This variation of the parameter b shifts the uncertainty of the vdW EoS
and allows predict with more precision the liquid region.
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Figure 1.Correlation among the experimental compressibility factor and calculated
with EoS-vdW and ANN-vdW.
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Figure 2. Parameters a y b from ANN-vdW hybrid model and vdW EoS.

For ANN-SRK hybrid model, the corrections on Z and ¢ and b parameters are not as
drastic as for the vdW EoS. Now, with the trained neural networks and the proper



1495

transformation of the EoS, the derived properties are calculated (see Table 2). Residual
enthalpy is important in energetic calculus; in Figure 3 the prediction with the four
models is presented for an isotherm of propane. At low densities, the predictions for all
models are equivalents (gas region) and it is clear that vdW EoS has a short range in
density that is extended in the ANN-vdW model; for the RKS EoS both models are
similar. Figure 4 shows the Gibbs energy for n-heptane, again the vdW Eos is limited in
liquid region and both ANN hybrid models tend to correct these region.

== vdW EoS. = = ANN-vdW. ««« SRK-E0S. ==~ ANN-SRK

‘4 T T T T 1
0 0.003 0.006 0.009 0.012 0.015

p[molicm’]

Figure 3. Residual enthalpy from vdW-EoS, ANN-vdW, SRK EoS and ANN-SRK models
for propane at 481 K.
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Figure 4. Residual Gibbs energy from vdW-EoS, ANN-vdW, SRK EoS and ANN-SRK
models for n-heptane at 540 K.
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Conclusions

The hybrid models based on artificial neural networks and cubic equations of state
shows consistency for the calculus of derived properties. The structure of the EoS is not
altered by the calculus of parameters via neural networks. The ANN behavior for a and
b parameters are smooth functions and can be correlated in compact functions to replace
the neural network from the model. Therefore, the hybrid models can be seen as
alternative to improve fundamental models.

References

Bravo-Sanchez U. 1., Rico-Martinez R., Iglesias-Silva G. A., 2002, Improvement of the
Empiricism in the BACK Equation of State via Hybrid Neural Networks, Ind.
Eng.Chem.Res. (41), 3705-3713.

Chouai A., Laugier S. Richon D., 2002, Modeling of thermodynamic properties using
neural networks Application to refrigerants, Fluid Phase Equilibria. 199, 53-62.

Kahrs O., Marquardt W., 2008, Incremental identification of hybrid process models,
Comput. & Chem. Eng. (32), 694-705.

Sharma, R., Singhal, D., Ghosh, R., Dwivedi, A., 1999, Potential applications of
artificial neural networks to thermodynamics: vapor-liquid equilibrium predictions,
Comput. & Chem. Eng. (23), 385-390.

Schmitz J. E., Zemp R. J., Mendes M. J., 2006, Artificial neural networks for the
solution of the phase stability problem, Fluid Phase Equilibria. (245), 83-87.

Simon L. L., Fischer U., Hungerbiihler K. ,2006, Modeling of a Three-Phase Industrial
Batch Reactor Using a Hybrid First-Principles Neural Networks Model, Ind. Eng.
Chem. Res. (45), 7336-7343.

van der Smagt P. P., 1993, Minimisation methods for training feedforward neural
networks, Neural Networks. (7), 1-11.





