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Distillation is the most important unit operation in process industry. Due to its phase
transition nature, large time delay and strong interaction between variables, the startup
of distillation columns is one of the most difficult operations in the chemical industry.
In many cases it is impossible to design an efficient control system due to the
unavailability of online measures of crucial variables of the process. One way to make
these variables to the control system is the use of a mathematical tool called soft-
sensors. A powerful tool that can be used as a sensor, easy to implement and use is the
neural network. In this work we chose to employ a modified wavelet neural network. Its
high ability to generalize and performance is superior when compared to traditional
feed-forward and radial basis nets in the identification of nonlinear process. The results
showed that the neural network can be an interesting tool to operate as a sensor to avoid
mathematical manipulation and possible loss of physical meaning of variables in the
modeling of the distillation column.

1- Introduction

Due to the phase transition nature, large time delay and strong interaction between
variables, the startup of distillation columns is one of the most difficult operations in the
chemical industry. In this way, start-up operations represent very complex transient
periods because of the simultaneous drastic changes in many state variables. As these
dynamic transitions are always considered as non-productive periods, many researchers
have been performed with the objective of minimizing the start-up time, the energy
consumption or the amount of waste products and present the resulting start-up policies
(Ruiz et al., 1988; Sorensen & Skogestad, 1996; Han & Park, 1997). The transient time
(and its bad consequences) minimization can be achieved by making crucial variables
values available to the control system. Nevertheless, in many cases, this is not possible
for many reasons: concentration analyzer maintenance, or even, the inexistence of an
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online sensor. One way to cope this problem is the use of a mathematical tool called
soft-sensors. Soft-Sensors are sophisticated monitoring systems that can relate state
variables less accessible and the variables that can be measured during the process.

The soft sensor design involves the selection of the estimation structure and the choice
of the estimation algorithm (i.e., the kind of dynamic data processor that performs the
estimation task). The structural decisions (number and sensor location, set of states to
estimate) play an essential role on the estimator implementation. The choice of number
and sensor location still remains an open issue, with results that are not clearly
connected with the estimator algorithm design and implementation (Venkateswarlu and
Kumar, 2006; Oisiovici and Cruz, 2000). Soft sensors, according to Fortuna et al.
(2005) have a number of attractive properties: they offer a low cost alternative to
expensive hardware sensors; they can work in parallel with hardware sensors, providing
useful information for fault detection tasks; they can easily be implemented on existing
hardware and can easily be retuned when system parameters change; they allow real
time estimation of data, overcoming the time delays introduced by slow hardware
sensors, thus improving the control algorithms performance.

The present work shows the implementation of a wavelet neural network as a soft-
sensor. The data for the training and validation were generated by a rigorous
mathematical model of the process.

2- Neural wavelet description

Wavelets constitute a family of functions built from dilatations and translations of a
basic function W, known as “mother wavelet” (Claumann, 2003). Wavelets are defined
as families of functions in the form:
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with a,b I R, a # 0. The b parameter performs the translation and the a parameter, the
scale changing. By restraining the values of ¢ and b to a discrete set it is possible to

determine a family of discrete wavelets. In the direct case a=a;" and b= nbya,",
with a;, >1eb, >0 . In this case, wavelet is expressed in the form:
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An f(x) function has its presentation in the space of functions generated by the family
l//(m, n) described as an expansion in series of functions, according to:

f(x)= 2 zcm,nlpm,n (x)m’n €z (3)
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The resolution plays the equation solution:

¢(x)=§z_ij,,¢(2x—n) “

where ¢ is known as scale function and n is the last coefficient index.

The pattern values used for ay and b, were respectively 2 and 1. According to Bakshi
and Stephanopoulos (1993) those values are employed in several applications. The
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functions can be specified as basis of Haar, splines and Daubechies. At the Claumann
(2003) neural network development only the quadratic spline was used.

By using the multiresolution analysis, the expansion in series of functions, represented
by the equation (3) is, in general, divided into two parts, and it can be expressed by:

n=o M=o N=0
S()= 2 2du8, () + D D e ¥ v) )
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scale finction wavelets

The roughest approximation is obtained by the expansion in series of functions and, the
details are generated by the walvelets. As it is composed of an f(x) limited conjunct, it is
approximated in a limited domain and until a precision level. This finite number of
points imposes restrictions to the number of functions used in the approximation, with
only a few levels of resolutions to obtain a small approximation error.

2.1 Soft-sensor Design

The wavelet neural network used in this work has some modifications whose main
objective is the improvement on the ability of generalization at the same time that it
reduces the neurons number. The main modification carried out is that in a wavenet, the
first level used in the approximation is constituted of scale functions and the next ones,
if necessary, of wavelets, in the network used the multiresolution is carried out only
with scale functions, decreasing the number of activation functions. The training data
are initially approximated with activation functions (scale functions), whose support is
equal to the domain of the problem (global scope function), contrary to the wavenet
proposed initially, which uses only localized functions, minimizing the number of
parameters to be estimated. In the case the approximation is not adequate, then,
walvelets can be added with a crescent level of location according to the
multiresolution. Figure 1 shows a wavelet illustration used where y(k+1) is the variable
predicted in the time (k+/) and two inlets: the auxiliary variable u(k) and the outlet in
the current instant y(k). The inlet layer weights receive the value 1.
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Figure. 1 — Wavelet network used as a process simulator. Image provided by
CLAUMANN (2003).

The network has only two adjustable parameters: the regulator and the resolution levels.
When a model has small errors and a deficient set of data uncertainties can be generated
in the data approximation. A way to minimize them is to introduce an advance
knowledge of the process, instead of just performing a data approximation. The
regularization idea is to incorporate this information through a non-negative functional.
For that, Tikhonov theory was used, where the problem now is to find the s function
which minimizes the called Tikhnov functional:
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g(s) =&, (s) + e, (s) (6)
with A as the regularization parameter.
The other adjustable parameter, the resolution level, has a direct influence on the
network performance, since the number of scale functions defined in the domain more
parameters should be estimated, consequently increasing the possibility of numeric
error. The evaluation of the results generated by the neural network was based on four
parameters: quadratic average error values, maximum error, correlation coefficient and
computational time, that is, CPU time.

2.2 Startup procedure

The startup procedure in the distillation column followed an event sequence: reboiler
startup, feeding valve startup and modification of the infinite reflux rate for the
operation value. It was considered that the column heated at a predetermined
temperature of 25°C, the tray has a 10% holdup, condenser and reboiler with a level at
50%. The tray composition was considered as being the same for the feeding flow. With
this procedure no overflow problem has been observed neither has the column
exhaustion. The event sequence hasn’t brought any numeric problems to the model
resolution.

3. Results

A distillation column sensitiveness analysis has been carried out in order to observe the
variables of greatest impact on the desired composition profiles. The size of the data set
selected for training and testing followed the recommendation of Pinheiro (1996) whose
proportion is respectively 70% and 30% of the set. The results obtained by the
simulation of a 5 tray, binary column (n-butane and n-pentane) were presented, whose
feeding tray is the number 4. The flow gets in as saturated liquid and the column
operates at atmospheric pressure.

3.1 Estimation of concentration in the top stream

Several tests have been carried out in order to select the variables that generate the best
predictions of top composition. It is probable that the influence of the disturbance on the
reflux rate is adequately quantified through the temperature measurement on the tray 2,
rate by which the results were better. As it gets away from the top of the column, the
influence of the reflux rate variation becomes less intense, not aggregating any
improvements in the results of prediction and inclusion of new measurements as the
network inlet variables. Figure 2 shows the results of the tests carried out in the neural
network after it is worked out and validated.
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Figure 2 — Results obtained by simulation and the network to predict the n-pentane
composition in the top stream

From the observation of the figure 2, it is observed a qualitative and quantitative
agreement of the resulted obtained by the neural network. By calculating the absolute
error errors in the order of 0,006% are obtained.

3.2 Estimation of concentration in the bottom stream
The tests have shown that only temperature measurements weren’t enough for an
adequate prediction of the bottom stream. The need for the inclusion of an auxiliary
variable was observed. The same way that the temperature measurements were used by
the readiness of online measuring, the choice for the auxiliary variable, essential for the
case of the bottom composition prediction, has also considered the availability and the
readiness of the measuring.
The many tests carried out have shown that temperature measurement on the tray 6 and
the inclusion of the reboiler load measurement as an auxiliary variable generated the
best results. Figure 3 shows the results found during the validation of the neural
network.
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Figure 3— Results obtained by simulation and the network to predict the n-pentane
composition in the bottom stream



1466

A greater difficulty in carrying out the composition prediction of the column bottom
stream. According to Lang and Gilles (1990) it is about the region of greatest mass
transfer in the column, fact that can make only the measurement of the temperature an
insufficient data to predict the composition. It is also a region strongly influenced by
variations in the reboiler load and the feeding conditions, one more time being a region
that needs more information of the process to predict the composition.

4 Conclusions

The proposed soft-sensor, represented by a wavelet neural network was able to predict,
within the desired precision, the variables of interest during the startup procedure. With
the sensor tested and validated it is possible to make available the variable values for a
control system and in this sense, to minimize the transient time of the startup procedure.
Thus, this work presents a robust tool, of simple usage and able to increase the set of
mathematic solutions whose main goal is to minimize the problems caused by the
column startup.
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