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The diesel hydrotreating (HDT) process in refining oil plants is a conversion process
responsible for the specification of this product in oil industry. In this work, the
objective was to estimate sulfur content in the outlet stream of the unit, using inferences
based on heuristic modeling. Neural networks (NN) were used to correlate the sulfur
content, measured offline in laboratories, with variables measured on-line (as
temperature and flow rates) in the reaction section of the HDT unit. Historical data was
loaded from Petrobras (Brazilian Oil Company) Duque de Caxias Refinery (REDUC) in
Rio de Janeiro and treated in order to remove outliers and reduce dimensionality. After
that, twenty-four different designs of neural networks were trained to find out the best
fit to real data. The chosen neural network was implemented in the refinery’s data
storing and acquisition system. Very good predicitons of sulfur content were obtained
indicating the use of this inference for advanced process control.

1. Introduction

The search for the maximization of light products from heavier petroleum and more
stringent enviromental restrictions give remarkable importance to conversion processes
of heavy oil fractions into more valuable lighter ones (Speight, 2004). At present, the
hydrotreating (HDT) process plays a major role in refineries. In addition the monitoring
of HDT units bring benefits such as energy savings, reduced off-specification products
generation, less operational problems etc. However, analytical measurements of product
quality variables may be expensive, unreliable and require long times. In this scenario,
the real time monitoring of HDT units — specially of product sulfur content — based on
inference models is justified.

Inference models employing easily measurable operational variables (secondary
variables) may be developed, based on the hypothesis that variations in these secondary
variables reflect variations in the primary (or target) ones. Neural Networks (NNs) are
recommended for heuristic modeling strategies in which the process is represented
based on the knowledge of experts and/or on process history data.

This contribution presents the develoment of a soft sensor based on NNs in which the
sulfur content in a converted diesel product was the inferred variable and the flow rates,
temperatures and pressure in the HDT unit were the secondary variables. Data from a
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HDT diesel unit located in Petrobras (Brazilian Oil Company) Duque de Caxias
Refinery (REDUC), Brazil, were used for the study.

2. The HDT Process: Description and Data

A hydrotreating plant is composed by a reaction section — which includes a series of
pre-heating furnaces, the reactors, the hydrogen flash system and the make-up
compressor for hydrogen — and a stabilization section. In the present work, only the
reaction section was focused because it is the most important one as the reactions and
the major disturbances (related to feed and hydrogen flow rates) happen there. The
diagram of this part of the unit can be seen in Figure 1.

Two reactors are employed in REDUC Refinery. The reactors are trickle bed ones as the
inflow enters in gaseous and liquid phases, composing a triphasic system together with
hydrogen and the catalyst solid bed. A quench system is used to control the temperature
of the reactors. This is achieved with the injection of a hydrogen stream in the middle of
catalytic beds. The yield products of this unit are finally directed to stabilization section,
where all commercial specifications are adjusted.

A total of 13 (input) variables that influence the sulfur content in the diesel product
(output variable) and that are are available on-line were chosen. The location of these
measurements in shown in Figure 1 as follows: feed diesel flow rate (1); recycle (2) and
make-up (3) hydrogen flow rates; temperature in the input stream to reactor 1 (4);
hydrogen recycle for reactor 1 (5); temperature in the input stream to reactor 2 (6);
hydrogen recycle for reactor 2 (7); temperature in the hydrogen recycle stream (8);
temperature measurements in beds 1 and 2 of reactors 1 (9 and 10, respectively) and 2
(11 and 12, respectively) and partial hydrogen pressure in the unit (13).
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Figure 1 HDT Reaction Section

The period between Juny 2005 and June 2006 was chosen as historical database, being
part of it illustrated in Figure 2. Daily laboratory analysis of sulfur content in the diesel
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product were available. In order to consider dynamic effects, all the input variables were
collected at previous times (at 2 h; 2 %2 h; 3 h and 3 % h earlier) in relation to the time
when the sample to analyse the sulfur content in the output of the unit was taken
(Salvatore, 2008). These data were available in the PI System™ of the refinery.
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Figure 2 Historical database

Because of these delayed measurements, the number of inputs to the models built up to
four times (from 13 to 52). This increase in the number of inputs implies a need for
more data in order to avoid overfiting of the NNs. This — together with the fact that the
input variables may not be independent among themselves — motivated the application
of dimensionality reduction techniques, as presented ahead in this text.

3. Development of the NNs

NNs were applied as an estimator of product quality based. The module STATISTICA
NEURAL NETWORKS (SNN) of the program Statistica™ version 6.0 was utilized.
Multilayer Perceptron (MLP) and Radial Base Function (RBF) networks were tested.
These nets have a multilayer topology with feedforward connections; both types have
linear neurons in the input and output layers. The hidden units have sigmoidal activation
functions in the MLP and radial functions in the RBF networks. MLP networks are
trained by supervisioned (typically modified backpropagation) methods, while RBF
networks are trained using both unsupervisioned (for the location of the centers and
establishment of the deviation of the radial units) and supervisioned (linear optimization
for the weights between the hidden and output layers) methods. Both paradigms are
very well documented in the literature (Haykin, 1999). Linear NNs were also used here
for comparison purpose, these NNs have only two layers with linear units.

Before using the data for training the NNs, outliers were discarded (Salvatore, 2008).
The amount of data was increased using spline interpolation. This allowed the amount
of data to be increased by a factor of 10, rendering 1291 patterns (2/3 randomly used for
training and 1/3, for validation).

The models were selected on the basis of the S.D. ratio. The S.D. ratio is obtained by
dividing the standard-deviation obtained by the difference between the predicted values



1392

and the individual target values by the standard deviation of the data. Models with S.D.
ratio between 1.0 and a little less than 1.0 achieve bad to reasonable predictions, but
models with S.D. ratio between 0.2 and 0.1 usually show very good performances
(Salvatore, 2008). Sensitivity analysis were also perfomed with the trained NNs in order
to discard variables. The procedure treated each input variable as if it wasn’t available
to analyses, substituting it by its average value. Dividing the total network error, when
the variable was ‘unavailable’, by the total network error, when the variable values were
used as input values, resulted in a ratio that would have a value bigger than 1.0 if the
variable contributed to the resolution of the problem.

For each group of inputs tested, one hundred NN were trained. The best MLP, RBF and
MLP NNs (one of each) were retained for each group based on the S.D. ratio, as shown
in Table 1, which will be fully described in item 4.

Group I comprises nets trained using all the 52 inputs. Group II contains the nets that
were obtained after the use of pruning techniques, based on the sensitivity procedure
described above. Group III contains the NNs obtained after the application of feature
selection techniques, like successive inclusion (forward) or exclusion (backward) of
variables. Group IV includes NNs trained after the application of a dimensionality
reduction (or feature extraction) procedure based on dynamic principal component
(DPCA) analysis, according to a methodology proposed by Ku, Storer and Georgakis
(1995). Additionally, a new set of inputs was chosen based on the location of the
measurements. For the variables whose measurements were proceeded far from the
sampling location of the diesel output stream, only two delayed measurements were
used (at -3 and -3 % h). With this strategy, the number of inputs was reduced to 31.
These NNs are named here ‘Improved Heuristics™ and they belong to Group IV or V,
wheter pruning is used or not. A more detailed discussion is found in Salvatore (2008).

4. Results and Discussions

Table 1 presents the results for the best NNs for each group. In that table, the
description of the NN follows the order: type, number of neurons in the input, hidden
and output (always 1 here) layer. The NNs were compared according to the smaller S.D.
ratio, bigger R? and smaller number of paramters.

The analysis of Table 1 shows that the RBF NNs present an excessive number of
parameters. So, they were not chosen as soft sensors. Continuing the evaluation of the
models, it can be seen that the NN 6, an MLP, would be the best option after the RBFs,
if the S.D. ratio were the only criterium taken into account. However, it can be seen that
this NN is not adequate, because its number of parameters (817) is high, considering the
number of training patterns used (860).

The NNs in Group IV used 9 principal components, defined through the methodology of
Ku, Storer and Georgakis (1995). However, these NNs did not present a good
performance, what may be explained by the fact that DPCA is a linear technique and
one of the most distinguished characteristics of the HDT process is its nonlinearity. A
complete discussion can be found in Salvatore (2008).
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Table 1: Results for each trained NN

. S.D. ratio Number of
NN | Group | Description (Validation) R’ Parameters
1 RBF 52-318-1 0,072258 0.99477 17173
2 1 Linear 52-1 0.657589 0.56806 52
3 MLP 52-18-1 0.129320 0.98329 973
4 RBF 47-323-1 0.071996 0.99481 15828
5 1 Linear 30-1 0.751090 0.43586 30
6 MLP 46-17-1 0.121310 0.98528 817
7 RBF 42-303-1 0.090881 0.99174 13333
8 i Linear 42-1 0.747104 0.44219 42
9 MLP 42-17-1 0.161896 0.97389 749
10 RBF 9-323-1 0.085875 0.99265 3554
11 V4 Linear 9-1 0.839976 0.29453 9
12 MLP 9-10-1 0.431394 0.81462 111
13 RBF 31-323-1 0.041674 0.99826 10660
14 14 Linear 31-1 0.802164 0.35655 31
15 MLP 31-17-1 0.154924 0.97599 562
16 RBF 31-307-1 0.058699 0.99655 10132
17 Vi Linear 25-1 0.804042 0.35399 25
18 MLP 29-15-1 0.212412 0.95593 466
19 RBF 33-291-1 0.018809 0.99964 10186
20 Vil Linear 33-1 0.019963 0.99960 33
21 MLP 33-7-1 0.022242 0.99950 246
22 RBF 30-47-1 0.192327 0.96301 1505
23 Vil Linear 25-1 0.020141 0.99959 25
24 MLP 10-4-1 0.025780 0.99934 49

Trying to further improve the results, a new model based on NN was proposed. NN 15
was chosen for being the most parsimonious one, that presented a satisfactory result in
terms of S.D. ratio and R? correlation, while still attending the heuristic criteria, which
considered that the dynamics of the HDT process demanded three to four hour delays
between the inputs and the output variable. In this new approach, two delayed samples
of sulfur content were used as inputs together with the other 31 inputs of NN 15. The
past sulfur content data were available in the PI System™.

Analogously to what was proceeded previously, the nets were tested without (Group
VII) and with pruning (Group VIII) as shown in Table 1. As can be seen, the inclusion
of delayed sulfur data greatly improved the performance of the NNs. NN 21 and 24
present the best results when the 3 characteristics are analysed together. Even though,
NN 21 present more parameters, it can still be considered for industrial implementation,
once the proportion patterns/parameters is acceptable. It can also be seen that in this
case the linear NNs presented good performances. However, the linear models were not
implemented, because the HDT process is highly nonlinear and the MLP NNs are
expected to render a more robust behavior in such a case.
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NN 21 was implemented as soft sensor in the in the PI System™ of the refinery to infer
the sulfur content in real time. Figure 3 shows the inference and real laboratory data for
a three week window. It can be seen that the predictions of the NN follow very well the
real data. Presently, this NN is still being used as a soft sensor and it is also aimed to use
it in the advanced control system that will be implemented in the HDT unit.
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Figure 3: Results of the soft-sensor implemented in the refinery

5. Conclusions

The application of industrial knowledge together with advanced optimization and
statistic softwares produced a very effective NN soft sensor to infer sulfur content in the
HDT wunit. The MLP reveaeled itself as the best NN;. Besides presenting good
predictive ability, the compactness of the MLP eased its implementation in the PI
System™ and demanded very low computational effort. Tests were performed in which
it was verified that the execution intervals of the soft sensor can be lowered down to 1s.

So, it is expected that this tool may be used both for monitoring and advanced process
control.

References

Haykin S., 1999, Neural Networks — A comprehensive foundation. Prenctice-Hall, Inc.,
New Jersey.

Ku W., Storer R. H. and Georgakis, C., 1995, Disturbance detection and isolation by
dynamic principal analysis, Chemometrics and Intelligent Laboratory Systems 30,
179 — 196.

Salvatore L., 2008, Inferéncia do Teor de Enxofre em Unidades de Hidrotratamento de
Diesel baseada em Modelagem Heuristica, MSc Dissertation (in Portuguese).

Speight J. G, 2004, New approaches to Hydroprocessing, Catalysis Today 98, 55-60.

ACKNOWLEDGMENTS - This work was sponsored by ‘Brazilian Research and Projects
Financing Agency’ (FINEP) and PETROBRAS (Grant 01.04.0902.00).





