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Multiphase reactors are largely used in industrial processes like hydrogenation and
oxidation with usually high throughput production. These types of industrial chemical
processes are characterized by a complex dynamic behaviour that requires high
dimensionality and non-linear mathematical models, being difficult to be optimised by
conventional methods. In face of this, the present work aims to employ heuristic
methods to optimise a type of multiphase reactor. The idea is to employ a Particle
Swarm Optimisation (PSO) and to compare the performance of this method with the
performance of Genetic Algorithms (GAs), when applied to a three-phase catalytic
slurry reactor in which the reaction of the hydrogenation of o-cresol producing 2-
methyl-cyclohexanol occurs. Heuristic optimisation methods have the advantages of not
requiring manipulation of the mathematical structure of the objective function and/or
constraint and not requiring an initial feasible point. PSO and GAs have been
successfully applied to a range of problems and show characteristics of easiness of
implementation and capability of escaping local optimal solution. In this way, in order
to optimise the process, the PSO code has been coupled with the rigorous mathematical
model of the reactor and the same has been done with GA code. The aim of the
optimisation is the searching of the process inputs that maximize the productivity of 2-
methyl-cyclohexanol subject to the environmental constraint of conversion. The
comparison of the optimisation performance of both methods, PSO and GAs, can be
done in relation to computational time, to objective function value and to facility of
implementation, determining the suitable method for real-time optimisation.

1. Introduction

Hydrogenation multiphase reactors are typical to be large scale system with usually high
throughput production so that even small increase in productivity or cost reduction may
have a significant impact on process performance. Such type of reactors is characterized
by a complex behaviour due to heat and mass interaction so that the mathematical
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modeling leads to a system of partial differential equations that needs to be solved
numerically. The process optimisation requires a suitable solution procedure that allows
optimal values to be found with accuracy and robustness, especially regarding the initial
values. For that type of problem, solution procedure based on deterministic methods
tends to fail. A reasonable approach is to make use of heuristic methods and among
them Genetic Algorithms (GAs) and Particle Swarm Optimisation (PSO) are good
candidates. Heuristic optimisation methods have the advantages of not requiring
manipulation of the mathematical structure of the objective function and/or constraint
and not requiring an initial feasible point. PSO and GAs have been successfully applied
to a range of problems and have characteristics of easiness of implementation and
capability of escaping local optimal solution (Zhang et al., 2006; Deb, 2000).

This paper proposes to employ a PSO and to compare the performance of this method
with the performance of the GAs, when applied to a three-phase catalytic slurry reactor
in which the reaction of the hydrogenation of o-cresol producing 2-methyl-cyclohexanol
occurs. This comparison is done in relation to computational time, to objective function
value and to facility of implementation, determining the suitable method for real-time
optimisation.

2. Genetic Algorithms and Particle Swarm Optimisation

GAs are based on Natural Genetic and Natural Selection mechanism and some
fundamental ideas are borrowed from Genetics in order to artificially construct an
optimisation procedure. The GAs start with a population of possible solutions, which
suffers evolution during the generations. Each solution is coded as a set of binary or real
strings (chromosome), each string representing a variable in the solution. The evolution
occurs when some genetic operators as reproduction, crossover and mutation are
applied. The survival of the fittest is achieved by the assignment of a fitness function.
PSO imitates the social behaviour of organisms such as birds flocking and fish
schooling. Each solution candidate of the optimisation problem (called particle) flies in
the problem search space looking for the optimal position according to its own
experience as well as to the experience of its neighbourhood. The performance of each
particle is evaluated using a predefined fitness function, which capturers the
characteristics of the optimisation problem (Zhang et al., 2006). The velocity and
position of each particle are updated according to the following equations:

(k+1) _ (k) (k) (k)
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where n = number of particles in the swarm; m = number of components (operating

(k) _

variables to be optimised) for the vectors v; and x;; k£ = number of iterations; Vv,

the g™ component of the velocity of particle j at iteration k; w = inertia weight factor; c;
and ¢, = cognitive and social acceleration factors, respectively; r; and r, = random
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numbers uniformly distributed in the range (0, 1); xi-,kg) = the g™ component of the

position of particle j at iteration k; pbest; = the best fitness of particle j; gbest = the
overall best out of all the particles in the population.

Each particle moves in the search space with a velocity according to its own previous
best solution and its group’s previous best solution. The velocity update in a PSO
consists of three parts, momentum, cognitive and social parts, respectively, each term of
the right side of Equation 1. The balance among these parts determines the performance
of a PSO algorithm. The parameters ¢; and ¢, determine the relative pull of pbest and
gbest and the parameters r; and r, help in stochastically varying these pulls (Panda and
Padhy, 2008).

3. Optimisation Problem Formulation for the Hydrogenation
Multiphase Reactor

In the present paper, the o-cresol hydrogenation carried out in a three-phase catalyst
slurry reactor in order to obtain 2-methyl-cyclohexanol is used as study case. It is
typical of many industrially important large scale chemical processes where even small
improvement has significance in the economical performance. The process can be
described by the reaction that follows, since side reactions have not been detected:

3H,,, +C,H,0HCH,, - C,H, OHCH, 3)

2(g) 3
The mathematical model of this reactor was developed by Vasco de Toledo et al. (2001)
and the respective equations can be found in Rezende et al. (2008). The mathematical
model is characterized by a high dimensionality and non-linearity. The optimising
variables in this model are the linear velocity of gas (ug), the linear velocity of liquid
(ul), the linear velocity of coolant (ur), the hydrogen concentration in the gas phase in
the reactor feed (Agf), the hydrogen concentration in the liquid phase in the reactor feed
(Alf), the o-cresol concentration in the liquid phase in the reactor feed (BIf), the feed
reactor temperature (Tf) and the feed coolant temperature (Trf). The output variables are
exit concentrations of hydrogen both in the gas phase (Ag) and in the liquid phase (Al),
exit concentration of o-cresol in the liquid phase (Bl), reaction medium temperature at
the exit of the reactor (T) and temperature of the coolant fluid at the exit of the reactor
(Tr). The objective function is given by the maximization of the productivity of 2-
methyl-cyclohexanol, as calculated by Equation 4:

(BIf — Bl )*ul
L

where L is the reactor length that is equal to two meters.
Since, the productivity of the process is deeply dependent on the o-cresol conversion,
the o-cresol conversion is defined as a constraint of the process by Equation 5:

f(x) = Productivity = 4)

Bif Bl _

g,(X) = Conversion = 0.90 ®)



1368

The optimisation problem can be written as in Equation 6:

max f = max productivity

subject to : Model equations
Conversion >90% (6)
where x is vector composed by the input variables (ug, ul, ur, Agf, Alf, BIf, Tf and Trf).

The lower and upper bounds of the optimisation variables of the vector x are set as
shown in Table 1. These values are compatible with industrial size reactors and came
from a model validation procedure (Vasco de Toledo et al., 2001).

Table 1 - Lower and upper bounds of the optimisation variables.
Lower bounds | Optimisation Variables | Upper bounds
4.195x107 ul (m/s) 1.1805x107
1.08 ug (m/s) 2.52
3.0x10° ur (m/s) 7.0x10°
2.392x10° Agf (kmol/m®) 6.08x107
7.5x10™ Alf (kmol/m®) 2.25x107
9.732x107 BIf (kmol/m") 3.827x107
459.0 Tf (K) 621.0
425.0 Trf (K) 575.0

In order to solve the constrained problem, a constraint handling method based on the
penalty function approach was used not requiring any penalty parameter, since
infeasible solutions are compared based only on their constraint violation (Deb, 2000).
This method has been employed for both GA and PSO optimisation procedures. The
expression of the fitness function (F(x)) for the maximisation problem, presented on
Equation 6, is given by Equation 7:

f(x) ifg,(x)20 Vj=1.2,..nc

F(x)= (7

Sooin — i <g,(x)> otherwise
=

where fi,i, is the objective function value of the worst feasible solution in the population.

In order to optimise the reactor, a GA code and a PSO code are coupled with the non-
linear mathematical model (Rezende et al., 2008). The used codes and the results
obtained are shown in the next sections.

4. Optimisation of the reactor using GA and PSO

The GA code used in this work is the Fortran GA driver based on binary code,
developed by Carroll (2008). In this work, the uniform crossover, jump and creep
mutations, niching and elitism were used. The GA code requires a set-up of input



1369

parameters that in this paper are the optimised parameters by factorial design approach
developed by Rezende et al. (2008) indicated in Table 2. The PSO code used in this
work is a Fortran PSO driver. Equations 1 and 2 contain some PSO input parameters
that are also set on Table 2.

Table 2 - GA and PSO input parameters.

GA input Value PSO input Value
parameters parameters
Population size 50
per generation Number of
Maximum particles in the 40
number of 50 swarm (n)
generations
Crossover 0.70 .Nun?ber of 40
probability : iterations (k)
Jump mutation Inertia weight varies linearly
probability 0.0248 factor (w) from 0.9 to 0.5
Creep mutation 0.04 Cognitiye and
probability ' social
Initial random acceleration 0.5
number seed for -1000 factors
the GA run (c;and ¢y)

The GA and PSO input parameters, shown in Table 2, were used on GA and PSO code
coupled with the rigorous model obtaining a productivity of 1.84x10™ (kmol)/(m’s) and
1.95x10™ (kmol)/(m’s), respectively, as illustrated in Figure 1. The best values of the
optimization variables obtained by GA method are (ul = 1.07x107 ug = 2.41, ur =
3.0x107, Agf = 2.38x107, Alf = 2.0x107, BIf = 3.81x107, Tf = 620.66, Trf = 564.48)
and by PSO method are (ul = 1.12x107%, ug = 2.52, ur = 3.0x107, Agf = 2.39x107, Alf =
1.39x107, BIf = 3.83x107, Tf = 621.00, Trf = 573.32).
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Figure 1 - Comparison of Productivity obtained by PSO and GA methods.



1370

5. Comparison of the Optimisation Performance of PSO and GAs

Comparing the objective function value , Figure 1 showed that with 40 iterations PSO
method already reached a better result of the objective function value than GA method
that demanded 50 generations. Concerning to the optimal solution found by each
method, it can be observed that the values for each input variable are pretty much the
same, except for feed coolant temperature indicating the great impact temperature exerts
on process productivity. Considering the facility of implementation of the code, it is
observed that the GA code requires the set-up of arbitrary precision in decision
variables, coding and decoding of the parameters and set-up of parameters that can be
done by trial and error method or by factorial design, for instance, while PSO code does
not require such steps, which make PSO easier to manipulate than GA. The
computational time demanded by PSO and GA are similar, around three minutes,
indicating both as appropriate method for real-time implementation.

6. Conclusions

A comparison of the optimisation performance of GA and PSO methods applied to a
three-phase catalytic reactor that produces 2-methyl-cyclohexanol was presented. The
results of simulations of both methods showed that the PSO objective function value
was better than GA objective function value. It was presented that the manipulation of
PSO code is easier than GA code. The computational time required by PSO and GA
was equivalent, around three minutes, which makes both suitable approaches for real-
time optimisation of the three-phase reactor considered in this paper.
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