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The barriers between systems engineering and medicine are slowly eroding as recently
it has become evident that medicine has a lot to gain by systems technology. In
particular, the drug administration problem can be cast as a control engineering
problem, where the objective is to keep the drug concentration at certain organs in the
body close to desired set-points. A number of constraints render the problem rather
challenging. For example, hard constraints may be posed on the drug concentration in
blood, because a higher than a certain limit concentration may render the drug effects
adverse and toxic. In this paper we show that a popular method for tackling chemical
engineering control problems can be used for determining the optimal drug
administration. Specifically, the Model Predictive Control (MPC) technology is used for
taking optimal decisions regarding regulation of drug concentration in the human body,
while incorporating constraints on both drug concentration and drug infusion rate.

1. Introduction

Pharmacokinetics is the study of the drug/xenobiotic-organism interaction, in
particular the investigation of absorption, distribution, metabolism, excretion and
toxicological (ADMETox) processes. In pharmacokinetics, mathematical modeling has
historically played a vital role. A mathematical model in pharmacokinetics is a set of
mathematical equations, which can be used to characterize with reproducibility, the
behaviour and fate of a drug in a biological system when it is given by a certain route of
administration and in a particular dosage form. Several types of mathematical models
have been used in the field, including non-compartment models, compartment models
and physiologically-based models (Shargel et al., 2004).

The barriers between systems engineering and medicine are slowly eroding as recently
it has become evident that medicine has a lot to gain by systems technology. A family
of models that are very popular and have been used with success in many engineering
disciplines are the so-called black box models, i.e. models that describe the effect of
system inputs on system outputs, and are mainly developed using input-output data, i.e.
no fundamental equations are involved in the development of this particular type of
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models. These models range from simple-structured linear models to more complicated
models, which are based on computational intelligence technologies, such as neural
networks and fuzzy logic. Process control is an important engineering discipline that
deals with architectures, mechanisms, and algorithms for controlling the output of a
specific process.

The black-box modelling and the process control concepts can be easily applied to
pharmacokinetics, by considering the body as a system, where drug administration is
the input to the system, while drug concentrations in blood and/or specific organs of
interest are the system outputs (Gaweda et al., 2003; Bailey and Haddad, 2005). The
input-output data which are required in order to build black-box models are often
available in the form of concentration-time profiles, i.e. plots of concentrations as
functions of time, following the administration of the organism with a drug dose.
Concentration-time profiles can be considered as surrogates of the complex processes
involved in the processes of absorption, distribution, metabolism and excretion of the
drug. Additionally, the drug administration problem can be cast as a control engineering
problem, where the objective is to keep the drug concentration at certain organs in the
body close to desired set-points. A number of constraints render the problem rather
challenging. For example, hard constraints may be posed on the drug concentration in
blood, because a higher than a certain limit concentration may render the drug effects
adverse and toxic.

In this paper, we show how linear Finite Impulse Response (FIR) black-box models can
be developed using available experimental concentration-time profiles. The procedure
resembles the popular step response or pulse-response methods for developing dynamic
models for conventional engineering systems (Maciejowski, 2002). Then, the FIR
models are incorporated in the formulation and solution of a control problem which
aims at determining the optimal drug administration. Specifically, the Model Predictive
Control (MPC) technology (Pannocchia and Brambilla, 2006) is used for taking optimal
decisions regarding regulation of drug concentration in the human body, while
incorporating constraints on both drug concentration and drug infusion rate. The MPC
methodology is based on the formulation and solution of an optimization problem
where the objective function contains the deviation of the predicted controlled variable
from a desired set point over a prediction horizon and the control effort over a control
horizon. Several MPC formulations can take into account the system limitations, by
formulating and incorporating appropriate mathematical constraints.

2. Development of finite impulse response model

As mentioned in the introduction, for many drugs concentration-time profiles are
available, which show drug concentration responses after the administration of an
organism with a drug dose. These data are often population data, i.e. they include
concentration-time responses for several individuals, describing in this way the
differences in concentration responses between patients. The method described in this
paper is generic and can be used to any particular case where the necessary data are
available, after adjusting appropriately the time and magnitude scales. The method will
be based on the population concentration-time profiles depicted in Figure 1, which



1313

Blood concentration
O -_NWHMNOO N

Figure 1. Concentration-time profiles.

includes blood concentration-time profiles for 10 different patients, following the oral
administration with a drug dose of magnitude 1 (for example a tea-spoon dose). The
data are artificial, but typical of concentration-time profiles for different individuals.
The FIR model is of the following form:

C, (k)= Hau(k=1)+ Hyu(k =2)+--+ Hyu(k - N)=ﬁ:H,u(k—i) M

i=1

where C (k)is blood concentration at time instance &, u(k —1) is drug administration at
time instance k-i and H,, i=1,...N are the FIR model coefficients. The method for

obtaining the model coefficients assuming a linear model is standard and is briefly
described next:

If the model is applied on one concentration-time profile of figure 1, this corresponds to
a drug administration where 4(0) =1 and (/) =0, for any / # 0. Therefore, using the

model (1) it holds that  H, = C (i), H,,i =1,...N , where C,(i)is blood concentration

at time instance 7 on the particular concentration-time profile of figure 1. The fact that
after sufficient time, the blood concentration becomes zero indicates a stable system and
that N is finite. One additional important note is the following: Since multiple
concentration time-profiles are available, there are multiple C (i) values at each time

instance. If we denote as C _ (i),C

p.max

(i) the maximum and minimum values at time

(H+C, . (@i)/2.In

p,min

instance /, H, is finally obtained as the average (i.e. H, =(C

p,max p.min
addition, the maximum modelling error for coefficient /H,is defined as

E =C, )= (C, . ()+C, . ())/2=C
the FIR modelling methodology is adequate for this study for two reasons: Firstly, the

(i)— H,. It should be mentioned that

p,max p,min p,max
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produced model is linear and thus, the MPC problem that will be formulated in the next
section is quadratic, and thus, tractable. Secondly, it needs only a limited set of data as
opposed to other black-box modelling techniques (for example neural networks), where
larger data sets are necessary.

3. Model predictive control for optimal drug administration

Model Predictive Control has emerged over the last decade as a very attractive scheme
for controlling complex systems due to its capability to handle modeling errors and
process constraints. The major attraction of MPC algorithms lies on the long range
predictive horizon and the fact that the control law is not fixed, but it is based on on-line
optimization. This makes it possible to deal with:

e  Multivariable systems;

e Constraints on the manipulated or controlled variables;

e Model uncertainty. The objective of an MPC system design should be robust
performance, i.e. the controller should be designed so that the closed loop
performance specifications are met despite the system/model mismatch.

The main idea behind MPC-type control is the following: At sampling time £, a set of m
future manipulated variable moves (control horizon) are selected, so that the predicted
response over a finite horizon p (prediction horizon) has certain desirable
characteristics. This is achieved by minimizing an objective function based on the
deviation of the future controlled variables from a desired trajectory over the prediction
horizon p. The MPC optimization is performed for a sequence of hypothetical future
control moves over the control horizon and only the first move is implemented. The
problem is solved again at time k+1 with the measured output C,(k +1i) as the new

starting point. Model uncertainty and unmeasured process disturbances are handled by
calculating an additive disturbance as the difference between the process measurement
and the model prediction at the current time step. For the measured disturbances it is
assumed that the future values will be equal to the current value.

The exact MPC formulation is the following:

» N m

Ik =Y 0(C,k+ilb)—Cr) + D (R av(k +i)) ®)
i=1 i=1

subject to the following constraints:

i N
Model-based prediction: ¢ (k+i|k)=d(k|k)+> Hu(k+i—j)+ > Hy(k+i—j)3)

J=1 J=i+l
n N
Disturbance estimation: d(k |k)=C,(k)~C(k |k)=C, (k)= > Hu(k—j) 4
Jj=1

Input move constraints: —Au,, < Av(k+i)< Au 0<i<m %)

max ?
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Input constraints: u_, <v(k+i)<u, ., 0<i<m (6)

Output constraints: C,(k+i|k)<C, ., 0<i<p (7
N

End condition: y(k +m +1) = (1 szj(C;p —d(k| k)), i>0 ®)
i=1

where A is the backward difference operator, i.e. Av(k+i)=v(k+i)—v(k+i-1);
C ,(k+i|k) is the FIR model prediction generated at time point £, for the value of

blood concentration at time point k+i; C;p is the desired drug concentration in blood;
d(k | k)is the current disturbance defined as the difference between the actual drug
concentration in blood and the FIR model prediction; u(k—1),u(k —1)....,u(k—N)

are the drug doses at time points &-1, ..., k-N; v(k),v(k+1),...,v(k—m) and
Av (k),Av(k+1),...,Av(k—m) are decision variables; 1 and u ; are the upper

and lower values on v(k+i), 0<i<m respectively; Au__ is the upper bound on
the absolute value Av(k+i),0<i<m; C

- mas is an upper bound on the predicted
levels of drug concentration in blood; ® is the weight for the output deviation term in

J(k); R, 0 <i<m are the input move suppression coefficients in J(k).

4. Results

The simulation presented in this paper assumes that the MPC methodology, where the
FIR model has been developed as shown in section 3, is applied on the individual
patient corresponding to the concentration-time response with the highest concentration
peak (i.e. the highest modeling error is assumed). The objective is to achieve a drug
concentration in blood as close to C¥ =10 as possible.
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Figure 2. Optimal drug administration and drug-concentration time profile.
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The following bounds were used: u =0, u, =06, Au,, =02, =12

p.max

Weights ® and R were calculated using the method described in Vuthandam et al.,

2005, which guarantees robust stability and performance, even in the presence of the
highest modeling error, computed in section 2. The prediction and control horizons were
set to 15 and 10 respectively. Due to the linear nature of the FIR model the quadratic
programming MPC problem is solved with small computational effort (less than 1 s is
needed using MATLAB in a PC with a Dual Core 2.4Ghz processor), while
convergence is guaranteed. The linear nature of the FIR model becomes even more
important when the manipulated variable (drug dose) is limited to take discrete values
from a finite set. In this case the resulting MPC optimization problem is formulated as a
Mixed Integer Quadratic Programming (MIQP) problem, which is more
computationally intensive, but still tractable. If a nonlinear model is used, the resulting
Mixed Integer NonLinear Programming (MINLP) problem is difficult to solve. The
concentration response and the optimal drug administration are shown in figure 2,
which illustrates the efficiency of the method. It is clear that regardless of the modeling
error that was introduced, the control strategy performs with success all the control
tasks: the drug concentration settles to the desired set-point and is kept below the upper
bound of 12 during the entire simulation, the drug doses do not exceed the maximum
bound of 0.6 and two consecutive drug doses do not differ by more than 0.2.

5. Conclusions

In this paper, it has been shown that powerful tools, such as black-box modeling and
process control, which are popular in systems engineering, can be used in
pharmacokinetics for developing dynamic concentration-time models and for
determining the drug administration. The method is successful even in the presence of
modeling errors, i.e. it can be used for a wide range of individuals. The method is
currently extended to address the cases where drug doses are not continuous variables,
but discrete (for example multiple of a minimum dose, such as a pill).
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