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Global optimization of mixed integer nonlinear programming (MINLP) problems
containing signomial terms is in many cases a difficult task, and many different
approaches to solve these problems have been devised. In Westerlund (2005) a method
where a relaxed convex relaxation of the original problem is obtained by approximating
single-variable transformations with piecewise linear functions (PLFs) is described.
What transformations are applicable depend on the sign of the signomial terms. For
positive terms power transformations (PTs) (Lundell et al., 2007) and the exponential
transformation (ET) (Lundell and Westerlund, 2008) can be used. In Lundell and
Westerlund (2009) it was shown that the ET always results in a tighter underestimator
than the negative power transformation (NPT). These results are in this paper extended
to also include the positive power transformation (PPT); we will show that the PPT is
generally better than the NPT, and also describe the relationship between the PPT and
the ET.

Introduction

A special group of functions appearing in mathematical models of many processes is the
signomial functions. A signomial function is defined as the sum of signomial terms,
which in turn are products of power functions multiplied with a real constant, i.e.,

o(x) = Z o Z x:’ﬁ.
I i

The definition of a signomial function provides a very general formulation
incorporating many different types of functions; for example, bi- and trilinear terms, as
well as all polynomials can be regarded as special cases of signomials. The global
optimization method described in, e.g., Westerlund (2005) and Lundell et al. (2007) can
be applied to MINLP problems of the form

minimize f(x), x = (x4, %3, .., Xp),
subjectto Ax = a, Bx < b,
gx) <0, gx)+o(x) <0,
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where the functions f, g and q are convex, the functions o are signomial and x; > 0 Vi.
When approximating the inverse transformations with PLFs, the whole MINLP problem
can be written in a convex relaxed form overestimating the original problem, and by
iteratively improving the approximations the global optimal solution can be found.

The transformation approach

A positive nonconvex signomial term can be convexified by applying the single-
variable transformations x; = eXi (ET) or x; = X;% (PT) to the variables having
positive powers p;. The power transformations can be of two different types, the
negative power transformation (NPT) or the positive power transformation (PPT). To
guarantee a transformation resulting in convex terms, in the NPT all powers Q; must be
negative and in the PPT all powers except one (@} ) must be negative and the sum of the
powers must be greater than or equal to one, i.e.,

Z piQi + z p; =1

iipi>0 i:pi<0

In addition to introducing the transformations mentioned above, approximations in the

form of PLFs of the inverse transformations X; = Inx; and X; = x1/ % for the ET and
PTs respectively, must be included in the MINLP problem. See Westerlund (2005) or
Lundell and Westerlund (2009) for details.

Example 1. To illustrate how the transformation technique works, the ET, PPT and
NPT are now applied to the signomial function f(x,y) = xy. Using the transformation
x = eXE in the ET, and the transformation x = X 3 for the PTs, the transformed terms
will then take the form:

ET:xy - eXEe"E, PPT:xy - XY, NPT: xy —» XY, 2,

In the PPT the transformation powers @, and @, ; must be chosen such that one is
positive, the other negative, and their sum is greater than or equal to one, e.g., @y, = 2
and @, ; = —1. The conditions on the transformation powers in the NPT is that they are
both negative, e.g., Qyp = @y, = —1. Furthermore, the inverse transformations
Xz =1Inx, Yz =Iny and Xp = x/%,Y, = y'/% must be replaced by the PLFs Xz, Y5
and Xp, Yp. For the variable x in one step on the interval [x, X] the PLFs are given as

T— —x1/Q
Xs(x)=lnz+%(x—£) and Xp(x) =xv?+ a2l

. (*—x).

Theoretical results

In this section we will show some new results regarding the relation between the PTs
and the ET. This is a continuation of the work in Lundell and Westerlund (2009) where
the following theorem was shown.
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Theorem 1. The ET always gives a tighter convex underestimator when applied to an
individual variable than the NPT regardless of the power Q used in the NPT.

The results in Theorem 1 can be extended to also include the PPT:

Theorem 2. A single-variable PPT always gives a tighter convex underestimation than
both the ET and NPT.

Proof. This proof is similar to the proof for Theorem 1, which can be found in Lundell
and Westerlund (2009). When the power function xP is transformed by the
transformations x = X,?,Q >1 (PPT) and x = eXE (ET) and approximated with the
PLFs Xp and Xz respectively, the claim that the PPT is a tighter underestimator than the
ET is equivalent to

- >0
ROP = (%)’ = 29> e,
We now consider a one-step PLF only, so the previous inequality is equivalent to

EI/Q _ J_51/Q

x4 ——

Inx —Inx
(x—x) ] =exp <ln3_c +ﬁ(x - J_C))

\1/Q
By modifying this expression and introducing z = (i) and A = %, we receive the

equivalent form Az > z* + A — 1, which can easily be proven to be true whenever

Q = 1 and x < x < X by searching for the minimum value of the function f(z) = 1z —
2

z' -2+ 1

Thus, the PPT gives a tighter convex underestimator than the ET when applied to
individual variables. Furthermore, since we know from Theorem 1 that the ET gives
better approximations than the NPT, it is obvious that the same is true for the PPT. It is
also clear that the approximations are only equal in the endpoints x and X. m

Theorem 3. For the piecewise linear approximations X, (PPT and NPT) and Xz (ET),
the resulting convex underestimations of the PTs when the power Q goes to plus or
minus infinity is equal to that of the ET, i.e., limgy,1o0 X 9 = ofE,

Proof- The claim was proved for negative values of @ in Lundell and Westerlund
(2009). The proof is, however, valid for positive values as well. ®

Although the PPT always results in a tighter convex underestimator than the ET when
applied to an individual power function, as the following theorem shows, it is not
generally true for the case when a PPT is applied to a signomial term of more than one
variable.
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Theorem 4. Neither the PPT nor the ET gives a tighter underestimator in the whole
domain when applied to a nonconvex signomial term of more than one variable.

Proof. For a general nonconvex signomial term

s(x) = l_[xfi~l_[xf‘,

i€ly iel-

where I, ={i:p; >0} and I_ = {i:p; < 0}, only the variables x;:i € I, must be
transformed. When using the ET all of the variables with positive powers are
transformed using single-variable ETs and when using the PPT one variable (with
arbitrary index k € 1) is transformed using a single-variable PPT and the rest (with
indices i € I, \ {k}) using single-variable NPTs. We know from Theorems 1 and 2 that

R0k > (exp Kpr)’™  and  VieL \{k}: X250 < (expRipr).

when the transformation variables X; pr and X; gy have been replaced with the PLFs
X; pr and X; gr. Now, take two points x* = (x], ..., xy) and x* = (xf, ..., x}) such that:

i=k: X < xf <X, i=k: xf=x val =%,
xfp JieL\{k}: xi=xvxi=%, xf: {ieL\{k} x<xf<Xx,
i€l x <x; <X, i€l x <x'<x.

Then, for the point x* the following is true

s = [ [ | Jaor =20t [ (e ien)™ - Jo

iel iel- i€l \{k}) iel-
14 Pi * . A *
> (exp/?k,ET) . l_[ (exp Xi,ET) ' 'l_[(xi)p‘ = 8p(x"),
iel \{k) iel_

since the underestimations resulting from the PPT always lie above those of the ET
when x; < x; < x; and the NPT and the ET are equal at the endpoints, i.e., when
x; =x; Vx;{ =x;. Therefore, the PPT gives a tighter underestimation than the ET in
the chosen point . Correspondingly, for the point x¥ the following is true

s = | [2080 ] [ = (e Ban)™ [ | 22| [0

il iel_ i€l \{k} iel_
P P Pi 4
< (eXpXk,ET) .. l_[ (exp Xi,ET) " l_[(xz#) b= 8p(x).
i€l \{k} iel-

Thus, since both §p(x*) > §z(x*) and $p(x*) < 8z (x*) are true, neither the PPT nor
the ET gives tighter underestimations in the whole domain. Furthermore, since the
underestimators are continuous, there exist parts of the domain where they are equal. m
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Corollary 1. The region where the PPT and the ET are equal consists of the part of the
domain where the following expression is true

l_[X'*il”}i’gi = l_lemxi,w, I, ={i:p; > 0}.

i€l iely

Illustrations and examples

Some illustrations of the convex underestimators arising from different transformations
are now provided.

Example 2. The nonconvex function f(x) = —8x + 0.05x3 + 25x%5, 1 <x <7,
consists of two convex terms as well as the nonconvex signomial term 25x%5.
Transforming the nonconvex term using the ET and the PTs and replacing the inverse
transformation with PLFs, gives the convexified and underestimated functions

f(x,R) = —8x + 0.05x3 + 25¢%5%5 and f(x,£p) = —8x + 0.05x3 + 2587°°.

The underestimators resulting from the ET and the PTs (with different values on the
transformation power @) are plotted in Figure 1. From the figure, it can be seen that the
PPT and NPT gets closer to the ET when the power Q gets larger or smaller
respectively, as stated in Theorem 3.

Example 3. Illustrations of the signomial function f(x,y) = xy from Example 1
transformed using the ET and PPT (Q; = 2, @, = —1) are provided in Figure 2. In
Figure 3, the region where the PPT is a tighter underestimator than the ET is shown.

L L L L L
1 2 3 4 5 6 7

Figure 1 The function f(x) from Example 2 (thick, black) underestimated by the ET
(thick, gray) and the PPT (black), as well as the NPT (dashed) for different values of the
transformation power Q.
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Figure 2. The convex underestimators resulting from the ET (left) and PPT (right) for
the function f(x,y) in Example 3.

O0:=8,0,=-17 0, =100, 0, = -99

Or=2,0y=-1

Figure 3. The shaded area indicates where the ET gives a better approximation than
the PPT (the values of the transformation powers are indicated in the figure). The area
has been obtained using the expression in Corollary 1.

Conclusions

In this paper, it was shown that the PPT gives a tighter convex underestimator than both
the NPT and the ET when applied to an individual variable. Generally, however, the
PPT applied to signomial terms of more than one variable, only gives a tighter
underestimator than the ET in parts of the domain. An implicit expression showing in
which parts of the domain the ET is superior is easy to deduce (Corollary 1), however,
at this stage it is still not known whether explicit conditions exists.
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