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A generalized C++ class to solve nonlinear model predictive control (MPC) and
dynamic optimization problems is proposed. Since optimal control problems involve (i)
differential equations systems to foresee plants and/or process units dynamics and (ii)
constrained optimization issues to meet process specs and requirements, BzzMath
library is adopted as kernel to numerically face these tasks. The proposed class allows
both FORTRAN and C++ users to easily solve MPC and dynamic optimization by
defining their differential system and the desired objective function only, without taking
care of any numerical problem that may occur in integrating differential systems, in
searching for the minimum of a constrained/complex objective function, and in
implementing a moving horizon methodology.

1. Introduction

The twofold aim in studying a generalized class for solving optimal control problems is
the need of finding an efficient solution for the supply chain management problem as
well as to propose and validate a freely downloadable tool to support users in settling
nonlinear model predictive control (MPC) and business-wide dynamic optimization.

Actually, it is field-proven that MPC methodology is one of the most promising
approaches to ensure flexible and profitable production with an economic optimization
of plant operations, that is reduction of downtimes, product waste, and raw materials
cost impact, is carried out meeting process constraints and guaranteeing a reliable
control system. Notwithstanding, the industrial state of art in process control is still
represented by the linear MPC, even though nonlinear applications have significantly
increased in number in the ast five years (for more details, see also Bauer and Craig
(2008) and Qin and Badgwell (2003)). The delay in nonlinear applications is especially
due to the traditional inertia of process industries in acquiring and applying new
technologies and even to the lack of free tools to approach multifaceted optimal control
problems. BzzMath library (Buzzi-Ferraris, 2009a) offers a solid and reliable numerical
kernel to develop a generalized class for nonlinear MPC applications. BzzMath library is
briefly presented in Section 2. Section 3 discusses MPC structure. Section 4 shows the
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implementation of generalized class for MPC. Finally, the proposed tool is validated in
Section 5.

2. BzzMath Library as Kernel

This research activity is based on BzzMath library, which is freely downloadable at
Professor Buzzi-Ferraris’s homepage. BzzMath is a numerical library entirely written in
C++ by adopting object-oriented programming (Buzzi-Ferraris, 1994). It covers several
scientific fields such as linear algebra, linear/nonlinear regressions, optimization,
differential systems, efc., and some of them are reported hereinafter.

2.1 Linear Algebra
Linear algebra is the essential basis to solve numerical problems. Gill et al. (1991) said:

“The importance of numerical linear algebra in modern
scientific computing cannot be overstated”

BzzMath is predisposed not only to solve linear systems, but even to automatically
adopt the most performing algorithm in accordance with the type of system to be
solved. Being developed in object-oriented way, objects belonging BzzMath library can
easily identify and, if possible, exploit matrix sparsity and matrix structure of linear
systems, by making very performing their solution (Buzzi-Ferraris and Manenti,
2009b). Furthermore a relevant error that still affects other numerical libraries has
recently been fixed (Buzzi-Ferraris, 2009b).

2.2 Regression Models

Parameter estimations, outlier detections, model discriminations, and design of
experiments are well-known hard problems. BzzMath includes specific classes based on
very robust algorithms to solve linear and nonlinear regression problems (Buzzi-Ferraris
and Manenti, 2009a) and to detect masking effects, heteroscedasticity, parameter
correlations, and gross errors (Manenti and Buzzi-Ferraris, 2009). A methodology to
discriminate among rival models and, at the same time, to define the optimal design of
experiment is even implemented in BzzMath; correct meanings of statistical tests and
confidence region have recently been redefined (Buzzi-Ferraris and Manenti, 2009c¢).

2.3 Nonlinear Systems and Optimization

Starting from OPTNOV’s variant (Buzzi-Ferraris, 1967) up to the most recent
improvements, numerically robust and efficient algorithms are implemented for solving
nonlinear systems and optimization problems. On this subject, two examples can be
quoted: very large-scale nonlinear systems (sparse blocks matrix with a number of
equations in the order of some tens of millions) to characterize a kinetic post-processor
(Cuoci et al., 2007), and a constrained multi-scale and multi-objective optimization
(diagonal block matrix with unstructured elements) of a polymer plant (Manenti and
Rovaglio, 2008) were both solved by means of BzzMath library.

2.4 Differential and Differential-Algebraic Systems
At last, BzzMath library includes reliable and very performing algorithms for solving
ordinary differential equations (ODE) systems and differential and algebraic equations
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(DAE) systems (Buzzi-Ferraris and Manca, 1998). Again, its object-oriented structure
gives the possibility to significantly reduce the computational time in integrating
differential systems, apart from their stiffness. Many applications of BzzMath solvers
are proposed in the scientific literature. In addition, ad hoc solvers to tackle partially
structured DAE systems, typical of process control and process systems engineering,
have recently been introduced into the numerical library (Manenti et al., 2009).

3. Class Architecture

The spreading of nonlinear model predictive control in these last decades has been
mainly dictated by the following reasons: (i) it is intrinsically able to manage
nonlinearities in process dynamics and in profits; (ii) it can be based on first-principles
mathematical models and on nonlinear semi-empirical models as well; (iii) it allows
solving simultaneously the predictive control (quadratic problem) and the dynamic
optimization (economic problem).

The basic architecture of a model predictive control application is reported in Fig. 1.
Assuming an on-line implementation of this technique, the plant provides data to the
model predictive control at each sampling time. Specifically, the plant data are sent to
the optimizer, which includes an objective function, a dynamic model and, usually,
according to the mathematical model type, a numerical integrator to solve specific
differential systems, such as ordinary differential, differential-algebraic, partial
differential, and partial differential-algebraic equations systems.

If the real time dynamic optimization has to be solved as well, economical data and
market scenarios have to be provided to the MPC structure and one or more economical
objective functions should be defined.

| Plant |

!

| Optimization Algorithm |

]

| Objective Function(s) |

| DAE Solver | |
Model / Economical
Dynamic | Control Scenarios
Model Configuration

Fig. 1: architecture of nonlinear model predictive control.

3.1 Objective Function

Each optimal control problem can be brought back to the minimization of a weight least
squares objective function subject to equality and/or inequality constraints. In the
specific case of model predictive control, the generalized formulation is usually the
following:
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subject to:

being e,(/) = ¥(j) - y,,(j) the gap between controlled variables and their set-points;

.o () the gap between manipulated variables and their targets; and

Da(l)= a()- @
Da(i)= u(i)- (i - 1) the incremental variations of manipulated variables. w,,

w,

o Wy, are multiplicative coefficients (weights); ¥y, (]) are set-points of the

controlled variables at the j - th time-interval, u, (/) are targets of the controlled

tar

variables at the j - th time-interval; 37(] ) are controlled variables at the j - ¢4 time-
interval; ﬁ(l) are manipulated variables at the /- th time-interval; hp is the

prediction horizon; /4, is the control horizon; and differential system represents

constraints dictated by mathematical model of the plant/process unit to be controlled.

3.2 The Algorithm
The aforementioned formulation can be converted into an algorithm based on

differential solvers, optimizers, and outliers detection methods belonging to BzzMath
library. First of all, raw data acquired from the plant should be treated in order to detect
any gross error or bad quality measure. An opportune class to reconcile raw data set,
which is based on QR factorization and linear systems solution, can be adopted; for
sake of conciseness, this aspect is not described in this paper (for more details, see also
Buzzi-Ferraris and Manenti, 2009b). Reconciled data is then used to initialize MPC
structure: the optimizer is called the first time to evaluate the best manipulated variables
u by minimizing the objective function (1). To do so, all the equality and inequality
constraints (including the differential system) have to be evaluated and an opportune
differential solver should be invoked. The differential system is then integrated on a

specific prediction horizon A , in order to predict future system behaviour according to

different values of wu. After an iterative procedure, the optimal vector u is
implemented in the plant and new data are acquired to restart the cycle.

4. Class Validation

The class was validated on different ODE and DAE systems already proposed in
literature. Specifically, by adopting polyethylene terephthalate DAE model proposed by
Manenti and Rovaglio (2008), characterized by a diagonal blocks structure, the results
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obtained by the generalized class corroborate previous trends obtained by more complex
procedural structure. Fig. 2 shows the trends for intrinsic viscosity (IV) and pressure (P)
in both the intermediate (IP) and high polymerizer (HP) during a grade change
production.
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Fig. 2: nonlinear MPC applied to PET plant and compared to conventional control.

In addition, the class was successfully validated on batch models (Abel and Marquardt,
2003), by introducing an additional Boolean logic to manage discontinuous operations.

5. Conclusions

A generalized class for solving nonlinear MPC and dynamic optimization problems
based on BzzMath library was proposed and validated on different case studies.
Encouraging results were obtained not only for continuous applications but even for
batch units. Such a class allows the implementation of nonlinear MPC once an adequate
objective function and a differential system are defined. It can be easily used in
FORTRAN and C++ code without the need to worry about differential solvers and
optimization algorithms, since the object-oriented nature of the class and the philosophy
adopted in BzzMath library synergistically allow an automatic selection of appropriate
algorithms to solve these issues.

Appendix — Class Implementation: an Available Constructor
Given an objective function and a differential(or differential-algebraic) system, the

MPC can be invoked through the constructor:

BzzModelPredictiveControl NMPC (hp, hc,y0,u0,ad,DinSys, FObj,uL,uU) ;

where hp is the prediction horizon; hc the control horizon; y0 the reconciled measures
acquired by the field for each MPC call; uo the initial values of manipulated variables;
ad is an integer vector for discriminating between algebraic (ad (1) =0) and differential
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(ad (i) =1) equations of the system described in the function DinSys; FObj is the
weight least squares objective function; optionally, ul. and uU are minimum and
maximum constraints, respectively, of manipulated variables. For more details, see also
www.chem.polimi.it/homes/gbuzzi.

FORTRAN users can refer to Buzzi-Ferraris and Manenti (2009a) for a detailed
description and examples of C++ class implementation in FORTRAN environment.
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