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‘We simulate liquid-vapor phase separation in a van der Waals fluid that is deeply quenched
into the unstable range of its phase diagram. Our theoretical approach follows the diffuse-
interface model, where convection induced by phase change is accounted for via a non-
equilibrium (Korteweg) force expressing the tendency of the liquid-vapor system to min-
imize its free energy. Spinodal decomposition patterns for critical and off-critical van
der Waals fluids are studied numerically, revealing the scaling laws of the characteristic
lengthscale and composition of single-phase microdomains, together with their depen-
dence on the Reynolds number. Unlike phase separation of viscous binary mixtures, here
local equilibrium is reached almost immediately after single-phase domains start to form.
In addition, as predicted by scaling laws, such domains grow in time like t2/3. Compar-
ison between 2D and 3D results reveals that 2D simulations capture, even quantitatively,
the main features of the phenomenon.

1.Introduction

We present simulations of isothermal liquid-vapor spinodal decomposition of a van der
Waals fluid, occurring after quenching it from a single-phase equilibrium state to the
unsteady two-phase region of its phase diagram, showing that the process is governed by
the density gradient-driven non-equilibrium Korteweg body force.

Although experiments and simulations on liquid-vapor phase separation have been car-
ried out in the past (Yamamoto and Nakanishi, 1996; Beysens et al., 2002; Borcia and
Bestehorn, 2007; Oprisan et al., 2008), none of these previous works has focused on spin-
odal decomposition systematically. In this work, applying the diffuse-interface model
(Felderhof, 1970; Antanovskii, 1996; Anderson ct al., 1998), we report on liquid-vapor
spinodal decomposition in 2D and 3D for an off-critical van der Waals fluid as a function
of a convection parameter expressing the relative magnitude of capillary to viscous forces.
‘We show that, at the late stages of the process, the mechanism of growth is convection-
driven coalescence with a % power-law scaling for the characteristic size of single-phase
microdomains, in agreement with dimensional analysis (Siggia, 1979; Furukawa, 1994)
and experimental measurements (Beysens et al., 2002).

In this article, we recall in Section 2 definitions of quantities and non-dimensional param-
cters of the diffuse-interface model. Then, in Section 3, after a brief description of our
numerical method, spinodal decomposition patterns and the scaling law for the typical
domain size and composition of single-phase microdomains are discussed. At the end, a
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Figure 1: Liquid-vapor spinodal decomposition of an off-critical van der Waals fluid (with
po = 1.3) at different non-dimensional times (diffusive scaling) £ = 31073, 10~2 and
51072, with Z = 1, 10, 102 and 103 from top to bottom.

few conclusions are drawn.

2.The Governing Equations

The derivation of the governing equations has been presented elsewhere (Lamorgese and
Mauri, 2008). There, the equations of motion were obtained rigorously, coupling the van
der Waals equation of state with the fundamental conservation principles and invoking
irreversible thermodynamics. Also, the governing equations were made dimensionless
based on both a diffusive scaling (which is relevant at the beginning of phase separation)
and an acoustic, or convective, scaling (which is relevant at the late stage of phase separa-
tion). We remind below basic definitions of non-dimensional groups that emerge under the
acoustic scaling. Accordingly, defining a reference speed of sound, us = (RT./Mw )'/?,

we set:
N x - ugt - u petts L ) Nad®
= — t = = — Re = —— 3= —— ) 1
%= 7. Lo R Re=FEmL =gy %)
P _ P = T
=£ -2 7= 2
p=_o P poR T My T (2)
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Figure 2: Separation depth vs. time (acoustic scaling) for different values of #Z =
1, 10, 100, 1000 from 2D simulations with py = 1.3 (solid) vs. 3D simulation results
(dotted).

Here, d, N4 and My, denote a molecular diameter, the Avogadro number and the molec-
ular weight, respectively, whereas p. and 17, are the critical density and temperature, and
De = pRT./Myw is the pressure at critical conditions if the fluid were a perfect gas
(R being the gas constant), and [ is an O(1) density ratio. Re is an acoustic Reynolds
number which can be used to define an interfacial Reynolds number as

2
% = (ReCn)? = (M> , 3)
nr

where 77 is the viscosity of the liquid phase and where the Cahn number, Cn = a/L,
is the ratio of the interface thickness a to the macro length scale L. In fact, it can be
shown that the non-dimensional parameter &% can be defined independently as the ra-
tio of capillary-to-viscous forces (i.e. as an inverse capillary number). In the governing
equations, all external forces, and buoyancy in particular, were assumed to be negligible.
In other words, drop and bubble sizes ¢ are small compared to the capillary length, i.e.,
L < +/a/g(pr — p11) (with o the surface tension, g the gravity field and with I and I
denoting the liquid and vapor phases at equilibrium), which amounts to assuming that the
Bond number is very small. Also, for the sake of simplicity, we assumed 3 = 1.
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Figure 3: Integral scale vs. time (acoustic scaling) for different values of #Z =
1, 10, 100, 1000 from 2D simulations with py = 1.3 (solid) vs. 3D simulation results
(dotted).

3.Numerical Results

Our numerical methods are based on previous works by Nagarajan et al. (2003, 2007).
Accordingly, the governing equations were discretized using a structured, staggered ar-
rangement of the conserved variables, with spatial derivatives computed via sixth-order
compact finite differences (Lele, 1992). Temporal advancement was effected via a third-
order Runge-Kutta scheme.

3.1Liquid-vapor spinodal decomposition

We investigated liquid-vapor spinodal decomposition of a van der Waals fluid which is
instantaneously quenched into the unstable region of its phase diagram. The simulations
were conducted at 7' = 0.9, for negligible Bond number and for different values of %,
assuming an infinite expanse of fluid (modeled via periodic boundary conditions). At
this temperature, a representative vapor-liquid viscosity ratio was chosen to be r» = 1073,
Initially, we assumed quiescent conditions with a density field being the sum of a Gaussian
white noise superposed on a uniform constant density p = pg. We chose values of pg =
0.7, 1.042, 1.3 in the spinodal range, i.e., po € [pLf, pl], where pI = 1.39 and pl! =
0.654 denote the liquid and vapor spinodal densities at the given temperature. (For a van
der Waals fluid these values are easily found by solving the algebraic relation 5(3 — )2 =
4T.) Specifically, pp = 1.042 is the critical density, while pg = 0.7 and pg = 1.3
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correspond to vapor-rich and liquid-rich mixtures, respectively. As expected, we observed
that the phase-ordering process after the critical quench pg = 1.042 is characterized by
the formation of bicontinuous structures, which subsequently grow and coalesce. For the
off-critical quench, pg = 1.3 (Fig. 1), the phase separation pattern consists of a random
collection of rapidly coalescing pseudo-spherical nuclei of the minority phase, surrounded
by the majority phase. Only after the first spinodal pattern is formed (i.e., a bicontinuous
pattern for the critical quench, or a random collection of nuclei for the off-critical quench),
do the single-phase domains start to grow and coalesce, at an increasing rate for larger Z.
As a quantitative characterization of the influence of the convection parameter % on
the average phase composition of the two-phase fluid, we defined the separation depth,
s, measuring the “distance” of the single-phase domains from their equilibrium state
(Vladimirova et al., 1998) as

s:<p(x)—po>, )

Peq(T) — po

where py is the initial mean density, and the brackets indicate volume and ensemble aver-
aging. Here, p.q denotes the steady-state density of the liquid phase, p;, or of the vapor
phase, py7, depending on the local density p(z), i.e.,
pr,  if p(x) > po,
Peq(T) = . )
prr, if p(x) < po.

Figure 2 shows the temporal evolution (in acoustic time units) of the separation depth for
the off-critical quench gy = 1.3 for Z = 1, 10, 100, 1000. The solid curves in this figure
were obtained from 2D simulations on a 2562 grid, whereas the dotted lines are from 3D
simulations on a 1282 grid. This figure shows remarkable quantitative agreement between
the two sets of curves.

Next, we studied the rate of coarsening as reflected in the growth law for the integral scale

L (AP
L(t) = , 6
0= -2 ©

where p = p — (p), prms is the root-mean-squared value of p, hats denote Fourier trans-
forms, while the brackets denote averaging over a shell in Fourier space at fixed k = |k|.
As can be seen in Fig. 3, during the first stage of the process the rate of coarsening is
strongly influenced by the chosen value for the convection parameter, until sharp inter-
faces are formed. Then, domains stop growing, concomitant to their composition rapidly
reaching local equilibrium. Finally, during the latest stage, growth is driven by inertial
forces and is characterized by a % power-law behavior, in agreement with predictions
based on simple dimensional analysis (Siggia, 1979; Furukawa, 1994). So, first there is
a time delay, with no detectable liquid-vapor phase separation. Then, during the second
and third stages, first the system reaches local equilibrium (with the formation of nuclei
having sharp interfaces), and then these nuclei start to grow. This is in contrast with
phase separation in viscous liquid binary mixtures, where the two events occur simulta-
neously. There, after the (delayed) onset of phase separation, local equilibrium is reached
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well after the appearance of nuclei with sharp interfaces, through a process of composi-
tion relaxation of the nuclei that is concomitant to their temporal growth. In addition, in
liquid-liquid phase separation, capillary forces are balanced by viscous forces, leading to
a linear growth law of the nuclei sizes, while for liquid-vapor phase transition, capillary
forces are balanced by inertial forces, leading to a % power-law behavior.
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