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The synthesis and optimization of low-temperature gas separation processes is complex
owing to the large number of design options. In this paper, we have verified the
performance of two popular stochastic methods, Genetic Algorithm and Simulated
Annealing, in optimization of sub-ambient systems. GA has been applied to many
problem areas, but evidently not previously to low-temperature problems. Despite the
feasibility of GA optimizer in low-temperature processes, which has recently been
addressed, here we have studied the quality of GA answers in this subject. We designed
a very large experimental data set to systematically explore a range of parameter
settings in genetic algorithm and simulated annealing and afterwards we have
investigated the potential of achieving global optima. In other words, the optimization
task is not only to converge in a feasible region, but also to give the best qualitative
solution. Having identified the GA and SA parameters and also optimized the solutions
in three different case studies, we observed that: (1) SA is more robust and reliable than
GA when applying to low temperature gas separation processes. (2) By adjusting the
key parameters in SA method, the optimization process will avoid pre-mature
convergence and will be able to give the best near-global results.

1- Introduction

In the chemical process industry, there are many processes, such as natural gas
liquefaction, gas separation and ethylene production that operate partially or totally
below ambient temperature'. In these systems, it is desirable to develop a conceptual
methodology for designing the refrigeration and separation systems simultaneously,
including heat integration within and between the systems. Figure 1 shows a typical
scheme showing existing interactions to design an efficient process that produces
desired products from a given feed. Comprehensive exploration of various options
within its separation and with utility system is required. The synthesis problem is
complex and contains the following five issues: (1) Selection of the optimum sequence
to separate a feed into desired products. (2) Selection of the separation device to carry
out each task. (3) Determination of suitable operating conditions for each unit. (4)
Design of associated refrigeration cycles and heat exchanger networks. (5) Effective
using of different refrigeration configurations and refrigerant options or various
pressure levels for satisfying the hot utility requirement. “Smith (2005), Wang et.al
(2004, 2005)”
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Figure 1. Heat integration within and between the separations systems should be
explored in order to design an energy efficient system.
2- Stochastic Search Techniques — Genetic Algorithms, Simulated

Annealing and Their Parameters

The stochastic methods rely on random decisions to explore the solution space. The
most important feature of stochastic methods is that the optimization result given from
the algorithm is not a single global optimum but a set of improved solutions towards the
best one. For a complex system, providing a set of ‘good’ or ‘satisfying’ solutions is
more important than attaining a single optimum point. “ Golberg, (1989).”

Genetic algorithm is the famous stochastic search algorithm which begins with a
random initialization of the population. The transition of one population to next (is
called generation) takes place via the application of the genetic operators: selection,
crossover, and mutation. The application of the genetic operators upon the individuals
of the population continues until a sufficiently good solution of the optimization
problem is found. Many efforts have been done on choosing values for GA parameters.
Making a decision to set the values for different parameters is still adventurous. These
parameters typically interact with each other non-linearly, so they cannot easily be
optimized. “Jamshidi et.al.(2002), Lawrence (1991)”

Simulated Annealing is another important stochastic search algorithm. The algorithm
uses a control parameter to guide the optimization, called annealing temperature. At the
beginning, it is set to a high temperature. The trial solution is then generated by a
random change in the current solution. The objective function of this new solution is
calculated and compared with the objective function of the current trial solution. This
may be accepted regarding of being the best solution or not. At each annealing
temperature, this process is repeated a number of times, before the annealing
temperature is reduced based on a pre-specified schedule, and then the whole cycle is
repeated. The algorithm stops when a pre-established termination condition is met. An
infinite Markov chain length will guarantee the convergence towards the global
optimum. However, it is not practical to specify the Markov chain length to an infinite
value. Instead, a sufficient long Markov chain length will be suitable. Long Markov
chain length increases the computational time more quickly; however, short Markov
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reduces the probability of obtaining the optima. The trade off between the quality of
solution and computational time should be exploited. “Lawrence (1987), Dolan et.al.
(1989), Rodriguez (2005), Kah Loong Choong,2002”

3- Parameterization of GA and SA for Optimization of Separation
Processes

We have a homogeneous multi-component fluid mixture that needs to be separated into
some products. As explained previously, there are many choices for distillation
arrangement and their associated heat exchanger networks and refrigeration systems.
Thus, the best near optimum options should be found by a robust and reliable optimizer.
Indeed, the idea of heat integration between separation and refrigeration systems in such
industries is not too novel, but there is still a big question on which optimizer can
explore the interactions properly. A random walk that searches and saves the best
scheme through a space solution is a highly explorative search optimizer, which we use
here. The goal of this research is verifying which of these two random optimizers, GA
or SA, is more successful in gas separation and liquefaction processes to find the best
solutions. Hence, we need to explore the appropriate parameters in GA and SA to avoid
the premature convergence and improve the hill-climbing ability.

In this section, two sub-ambient industrial examples are presented to analyze the
parameter values for GA and SA optimization. Case 1 is a LNG separation train.
Typical specifications of the feed and product requirements are shown in Table 1.

Table 1. Problem data for LNG separation train

i Component Composition (mol %)  Product  Product Specification

1 Methane 0.3019 A 99% recovery of ethane
2 Ethane 0.2587

3 Propane 0.2648 B 98% purity of propane
4 Butane 0.1198 C 98% purity of butane

5 Pentane 0.0358 D 97% purity of pentane

6 Hexane 0.0190 E 99% recovery of hexane
Flow rate 4313 kmol/hr, saturated liquid at 20 bar

Also, case 2 is a live case study for Exxon Mobile Company. Table 2 shows the
compositions of stream achieved from non-associated gas. “Farry (1998)”

Table 2. Problem data for natural gas stream originated from non-associated gas

i Component Composition (mol %)  Product  Product Specification

1 Ethane 0.7750 A 98% recovery of ethane
2 Propane 0.1250 B 98% purity of propane

3 iso-Butane 0.0250 C 98% purity of iso-Butane
4 n-Butane 0.0250 D 98% purity of n-Butane
5 iso-Pentane 0.0150 E 99% purity of pentane

6 n-Pentane 0.0200

7 Hexane 0.0150

Flow rate 3600 kmol/hr, saturated liquid at 8 bar

Now, two stochastic models, GA and SA, are implemented to design an optimum
sequence that recovers desired products from a given feed, optimizing all synthesis
issues simultaneously. Note that the objective function is utility cost. Both techniques
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should be parameterized to avoid converging prematurely before the best solution has
been found. We have applied colom software, a program for analyzing a variety of
separation problems. “Centre for Process Integration, 2006)

a) Parameter Sensitivity Analysis in GA and SA Optimization

The value of generation, population, mutation and crossover play a very important role
in quality of result and speed of convergence in GA. Effective values of the parameters
used in the running of genetic algorithms in separation systems have been explored in
this work.

LNG
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Figure 3. The utility cost achieved with different blending of parameters

It has been found that the larger population size, the better the optimization
performance, however, it requires more generation and more computation efforts to
yield a near-optimum solution. According to a big set of data, we have recommended a
moderate population size (say 250) and a big generation (at least 2000) for robust
optimization of such systems. Also, we have used a well-known recommendation in our
work given by Grefenstette, which is 0.75-0.95 for crossover and 0.005-0.01 for
mutation rate. Mitchell (1998)”
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Moreover, cooling parameter; Markov Chain Length and maximum iteration are key
issues in SA. It would be interesting to explore the relationship between parameters,
which bias the results. It has realized that there is a negative power relationship between
cooling parameter and iteration and a linear relationship between iterations and Markov
Chain Length. After several runs, we have suggested Markov 150 and cooling
parameter 0.005 in such systems.

Figure 3 depicts the utility cost for two case studies in different runs done with different
blending of parameters. As illustrated, needless to say that different set of parameters in
SA may lead to different result cluster of an objective function. The following section
provides a set of quantitative results for comparison between the two optimizers, GA
and SA, in a low temperature gas separation system.

b) Comparison of GA and SA for Design and Optimization of Low-temperature
Separation Processes

Table 3. The results of synthesis and optimization of Exxon mobile case study for
different available set of refrigerants using GA, with population 250 ,generation 3000,
mutation 0.005 and crossover 0.9.

Different Refrigerants Utility cost Time Sequence Pressure

cc. Sstrip 4.00

0-Methane+Ethylene+Propylene 1,230,987 20:55:12 PreFrTC .
Simple 4.00

1-Methane+Ethylene+Propane 1,195,777 25:16:30  Sstrip 5.73
Simple 17.87

Simple 4.00

2-Methane+Ethane+Propylene 1,166,139 16:23:51  DivWall 7.47
Dephleg 10.93

.59. Sstrip 4.00

3-Methane+Ethane+Propane 1,199,227 17:52:45 DivWall 0.

Table 4. The results of synthesis and optimization of Exxon mobile case study for
different available set of refrigerants using SA, with Markov 150 and cooling parameter
0.005

Different Refrigerants Utility cost Time Sequence  Pressure Iteration
0-Methane +Ethylene 863,111  8:54:10 PreFrIC 877 1933
+Propylene Dephg 637

Simple 4.59
- +
1-Methane +Ethylene 856,161  9:30:30  PreFrTC 9.01 1985
+Propane Dephg 712

cthanetithane 858,124 7:25:38  Divwall 8.48 2053

+Propylene Dephg 5.82

Simple 6.13
-Methane+Eth: i
3-Methane+Ethane 784851 9:12:49 Simple 0.23 2159
+Pr0pane Simple 11.84

Simple 4.00

As we explained before, the optimal synthesis of low temperature separation sequences,
associated heat recovery network and refrigeration cycles should be considered
simultaneously. One of the important factors in cost reduction is selection of the best
refrigerants that satisfy a set of process cooling duties at different temperatures.
Consequently, the configuration design for the refrigeration cycle, the best selection of
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refrigerants, and the opportunities of integration with the process streams are explored
simultaneously.

Here, in order to verify the quality of Genetic Algorithm and Simulated Annealing
optimization, we have investigated the effect of applying different refrigerants to get
minimum utility cost. The results shown in Tables 3 and 4 are related to synthesis and
optimization of Exxon Mobile case study using GA and SA

4- Discussion and Conclusion

In this study, we designed a very large experimental data set to systematically explore a
range of parameter settings in Genetic Algorithms and Simulated Annealing. The
resulting data will be useful not only in better perception of fundamental nature of GA
and SA, but also in right decision for seeking the best solutions in gas separation and
liquefaction processes.

Although GA has long been applied in many problem areas successfully, but we have
presented a systematic series of runs showing the poor performance of GA in low-
temperature gas separation. Despite the feasibility of GA optimizer in low-temperature
processes, which has recently been addressed by others, here we have studied the
quality of GA answers in this subject. Our study has shown that GA is not robust in
finding a comprehensive search space compared to SA. Moreover, GA is a more time-
intensive method and the convergence speed of genetic algorithm is far slower than
Simulated Annealing.
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