CHEMICAL ENGINEERING TRANSACTIONS, Volume 12, 2007
Edited by Jiri Kleme$
Copyright © 2007, AIDIC Servizi S.r.l., ISBN 88-901915-4-6

Operation Planning Under Product Demand Uncertainty
In Complex Chemical Plants

Erica P. Schulz and M. Soledad Diaz
PLAPIQUI, Planta Piloto de Ingenieria Quimica
(Universidad Nacional del Sur - CONICET)
Camino La Carrindanga km. 7 - 8000 Bahia Blanca - Argentina

e-mail: {eschulz,sdiaz}@plapiqui.edu.ar

This work deals with the operational planning and process optimization under
uncertainty for ethylene plants through the formulation of a two-stage stochastic model
which is transformed into a deterministic mixed integer nonlinear (MINLP) one. The
model includes mass balances and nonlinear correlations for the furnaces and the entire
plant. Decay in furnaces performance throughout operating time has been modelled by
means of two sets of binary variables and several continuous time varying variables.
First stage decisions are associated to manufacturing variables, while second stage
decisions are related to logistics. The model comprises more than 10000 constraints and
256 binary variables and the resulting MINLP problem has been solved in GAMS
using DICOPT++.

1. Introduction

In the recent years, there has been an increased interest in planning and scheduling
under uncertainty. Demand uncertainties have received special attention, since in
nowadays” competitive and changing environments, planning output levels is crucial for
surviving in the business. In this paper, optimal scheduling and process optimization
under uncertainty in an ethylene plant has been considered through the formulation of a
two-stage stochastic model which is transformed into a deterministic mixed integer
nonlinear (MINLP) one. The decay in furnaces performance throughout operating time
has been modelled by means of two sets of binary variables and several continuous time
varying variables (Schulz ef al., 2006a). The main one is coils’ roughness, an empirical
linearly increasing continuous variable in each time period, whose dependence on time
has been determined through rigorous simulations and checked with plant data. There
are first stage decisions associated to manufacturing variables that include production
levels, process units operating conditions and furnaces run lengths. Second stage
decisions are related to logistics; they include inventory levels, product sales, shortage
of product and deviation from target inventory levels. The objective function is to
minimize expected cost and it is composed of two terms. The first term captures the
costs associated to the manufacturing phase, i.e., the sum of the first-stage costs, which
are deterministic and include raw material and production costs. The second term
comprises the expected value of the second-stage costs, which quantify the costs
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associated to inventory holding charges, safety stock violation penalties and penalties
for lost sales. They are related to logistics decisions. This second term is obtained by
applying the expectation operator to an embedded optimization problem.

The solution of the two-stage stochastic problem is obtained by solving its deterministic
equivalent problem, assuming that product demands are distributed on a discrete
probability space. The resulting reformulated MINLP problem has been solved in
GAMS (Brooke et al., 1992) using DICOPT++ (Viswanathan and Grossmann, 1990).

2. Mathematical model

A typical ethylene plant consists of several parallel pyrolysis furnaces, a cracked gas
compressor, heat recovery network, separation system, refrigeration system and steam
plant. The plant fresh feed, mainly ethane, bends with an ethane recycle stream and
ethane from a storage and is then diluted with process steam to diminish coke
deposition. Thermal cracking in the furnaces produces ethylene and subproducts. The
outlet gas is cooled and compressed to cryogenic conditions and is afterwards
fractionated in the separation train: demethanizer, deethanizer, depropanizer,
debutanizer and two splitters to further separate ethane from ethylene and propane from
propylene.

The proposed stochastic multiperiod model considers uncertainty in demands while
avoiding overproduction, which leads to high inventory costs, and shortfalls (missed
sales). Cyclic scheduling of shutdowns for eight parallel ethane cracking furnaces is
modeled as a multiperiod Mixed Integer Nonlinear Programming (MINLP) problem,
with discrete time representation. A fixed cycle length, based on plant historical data,
has been considered for all furnaces.

The objective function, Equation (1), is the maximization of the expected profit.

maxE[ZZRE(0”)+IC(9,',)+UP(Q',)}—ZZPCL, W

where 6 is the stochastic parameter vector of demands, £ stands for expected value, RE
for revenues, IC for inventory costs, UP for penalty for underproductions (unmet
demand) and PC for production costs (heating, cleaning, inventory and raw material
costs, and penalties for unmet security level in ethane storage tank), for products i and
time periods . The objective function is subject to furnaces shutdown scheduling
constraints, production correlations and mass balances on equipment and storage tanks.
An equivalent deterministic mixed integer nonlinear (MINLP) problem is derived.
Demand uncertainty is considered as a set of three scenarios, each representing a
possible shifting of market expectations. Demand probabilities have been discretized
with probabilities probp (probp =0.31, 0.38, 0.31, for the respective scenarios p, below-
average, average and above-average). The objective function is now expressed as
Equation (2):
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where the first term corresponds to the revenues and the second one is the penalty for
the unmet demands. The third term is the inventory cost which is, for each period,
proportional to the trapezoidal area under the inventory function (area ;;)).

Furnace Shutdown Scheduling. Binary variables z;, are defined by Equations (3) and
(4), where TPy is the cleanup period for furnace 4. If period ¢ is before or equal to 7P,
zp,. 18 0, otherwise z;,,equals 1.

t<TP, + BM1* z, Vht 3)

t>(TP,+1)-BM1*(1-z,,) Vh,t “4)

Furnaces decaying performance is described through coil internal roughness. This
empirical variable has been correlated based on rigorous simulations of the plant and it
has a linear dependence on furnaces operating time. The following Big-M formulations,
Equations (5) to (8), model roughness, Rug;,, behavior for each furnace / at time period
t. Coil roughness increases linearly with operation time and lowers to a minimum
roughness value (CIclean;, = 6.42 E -4) when the furnace is cleaned. After the shutdown
period, roughness increases linearly again. All furnaces have different initial conditions
(different parameters C/; ) and different slopes in the roughness correlations (different
parameters C2)).

Rug, , >Cl, +C2,*t-BM 2%z, Vh,t ©)
Rug, , <CI, +C2, *t+BM2*z, Vh,t (6)
Rug, , > Clclean, +C2, *[t—(TP, +1)|-BM2*(1-z,, ) Vh,t @)
Rug, , < Clclean, +C2, *[t—(TP, +1)|+BM2*(1-z,,) Vh,t ®

The heat load to furnace 4, QOf,,, depends not only on the furnace load but in the
operation time (it also decreases after the furnace has been cleaned and starts increasing
as operation begins), therefore, it has been modeled with analogous inequalities.

There is a second set of binary variables associated to furnaces shutdown, y,,; , which is
1 when furnace /4 is shutdown in time period 7 and 0, otherwise. Equation (9) defines the
shutdown period for furnace 4, TP,, and Equation (10) states that each furnace can be
cleaned only once throughout the time horizon.

TR, =)ty,, Vh ©9)

Yy, =] Z (10)

At most, two furnaces can be simultaneously shutdown during each time period. A fixed
cycle time of 16 weeks and a shutdown period of one week are considered for all
furnaces. The cyclic nature of the problem is modeled by imposing that final conditions
in coil roughness and inventory levels must be the same as initial ones.
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Production Correlations. The entire plant model downstream furnaces is included to
capture the influence of an important ethane recycle, which is part of the furnaces feed.
Big M inequalities have been included to ensure that the feed and production of each
furnace are zero when it is being cleaned. A detailed description of the ethylene plant
model can be found in Schulz et al. (2006a).

Mass Balances on Storage Tanks. The mass of product i stored in period ¢, V;;,, is the
mass at the beginning of the horizon, V;, , plus what has been produced of i minus what
has been sold until period .

i t Yi,t, 17
Vieo=Vio + Zproduction oy Zsalem,p P (a7
1 1

Mass balance equations have been also defined for ethane storage, and an economic
penalty has been included in the objective function when the stored ethane is above or
below a security level.

Penalty for Unmet Demands. Equation (18) states that sales (sale;;,) cannot exceed
the forecast demand (dem;;,). Furthermore, the unmet demand is monitored by a
penalty included in the objective function.

sale ;, , <dem ,, Vit p (18)

sale ,, , +delta,, , = dem ,, Vit p (19)

3. Numerical Results

In the present analysis, uncertainty has been considered for the demands of the two most
important products, ethylene and propane. The model provides a cyclic schedule for the
cleanup shutdowns for the eight furnaces on a fixed cycle of 16 weeks. Roughness
follows a linear behaviour, increasing until the cleanup period (7P,) when it decreases
to a minimum value (C/clean) and after furnace cleaning, it increases again. The model
contains 10283 constraints, 5369 continuous variables and 256 binary variables. The
problem has been solved in GAMS with DICOPT++ in four major iterations, with
CONOPT3 and CPLEX, in 4610 sec. in a Pentium I'V.

Numerical results obtained with the proposed stochastic model have been compared to
those from the deterministic model (Schulz et al., 2006). The latter considers ethylene
and propane demands 10% above the corresponding mean value. This fact explains the
fact that the overall ethylene production, which is a first-stage decision variable, is
higher in the deterministic case (Figure 1). In Figure 2, ethylene sales for the three
scenarios are shown. Table 1 shows the shutdown periods for the deterministic and the
stochastic cases. It can be seen that the optimal shutdown schedules follow similar
trends.
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Figure 1. Ethylene production for the deterministic and stochastic cases
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Figure 2. Ethylene sales for the three scenarios

Table 1. Shutdown periods

verage
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Furnace Deterministic Stochastic
1 15 14
2 12 13
3 9 9
4 8 10
5 6 8
6 4 5
7 14 14
8 10 10

Figures 3 shows propane production, sales, demand and storage profiles for the below-
average scenario. Production is a first stage variable, therefore it is the same for all the
scenarios. In the below-average scenario, the demand is satisfied in all the periods and
there is an overproduction that is stored. However, when demands are higher in the
average scenario, the production is not enough to completely satisfy the demands in all
the periods even making use of the stored propane. Therefore, in the last period the
production has to be used to satisfy the cyclic inventory constraints.
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Figure 3. Propane production, sales, demand and storage for below-average scenario
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4. Conclusions

Optimization results show that market demands are key parameters that have strong
effects on plant operation planning. As first and second stage decision variables are
different from the deterministic ones, it can be concluded that deterministic optimization
models can result in suboptimal planning decisions when uncertainty in market
demands is overlooked.

5. References

Brooke, A., Kendrick, D., Meeraus, A. A., 1992. GAMS- A User's Guide (Release
2.25). The Scientific Press. San Francisco, CA.

Clay L., Grossmann I. E., 1997. A Disaggregation Algorithm for the Optimization of
Stochastic Planning Models. Comput. Chem. Eng., 21, 751.

Schulz E. P.Bandoni J. A., Diaz M. S., 2006a. Optimal Shutdown Policy for
Maintenance of Cracking Furnaces in Ethylene Plants. Industrial Engineering
Chemical Research, 45, 2748.

Schulz E. P, Bandoni J. A, Diaz M. S., 2006b. Process Optimization and Scheduling of
Parallel Furnaces in Large-Scale Plants. Computer-Aided Chemical Engineering,
21B, 1833.

Viswanathan J., Grossmann I. E., 1990. A Combined Penalty Function and Outer-
Approximation Method for MINLP Optimization, Comp. Chem. Engng., 14, 769.

Acknowledgments
The authors gratefully acknowledge financial support from CONICET, ANPCYT and
Universidad Nacional del Sur, Argentina.





