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In this contribution, a generalized optimization framework to solving nonlinear chance-
constrained dynamic optimization problems under time-dependent uncertainties is
proposed. The time dependent uncertainties are described in discrete stochastic
variables in the prediction horizon. Hence, the influence of these uncertain variables on
the output constraints will propagate through the nonlinear process from time interval to
time interval. The solution of the problem has the feature of prediction, robustness and
being closed-loop. The developed approach is applicable to all kinds of operational and
control problems of chemical processes, where uncertainties need to be taken into
consideration. The main challenge lies in the computation of the probabilities of holding
the constraints, as well as their gradients. The applicability and efficiency of the
developed approaches will be presented through application to different case studies in
operation and control.

1. Introduction

Deterministic optimization approaches have been well developed and widely used in the
process industry to accomplish off-line and on-line process optimization. The
challenging task for the academic research currently is to address large-scale, complex
optimization problems under various uncertainties (Sahinidis, 2004). Therefore,
investigations on the development of stochastic optimization approaches are required. In
dynamic processes, in particular, there are parameters which are usually uncertain, but
may have a large impact on the targets like the objective value and the constrained
outputs. Thus, consideration of the stochastic property of the uncertainties in the
optimization approach is necessary for robust process operation and control. During the
past decades several approaches have been suggested to address these problems in a
systematic manner (Samsatli et al., 1998). One method of stochastic programming is the
probabilistic or chance-constrained approach which focuses on the reliability of the
system, i.e., the system’s ability to remain feasible in an uncertain environment. The
reliability is expressed as a minimum requirement on the probability of satisfying the
system constraints. Specifically in complex dynamic systems there are parameters
which are usually uncertain, but may have a large impact on the objective function and
the constrained outputs. Thus, the challenge is to make decisions a priori for the future
operation. However, the decision is needed to be made before the realization of the
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uncertain inputs. Consequently, under the consideration of uncertainties, the following
questions should be answered: 1) how to achieve an economically optimal operation? 2)
How to ensure that the constraints of the output variables are satisfied? 3) How to
prevent the propagation of the uncertainties to downstream processes? And 4) how to
design a proper feedback control system? A stochastic programming problem has to be
defined and solved to answer these questions.

2. Chance Constrained Optimization Approach

A general chance constrained optimization or control problem under uncertainty can be
formulated as follows:

min E[f(x,u,8)]+ o D[f(x,u.8)]
Stgdxu,E) =0, x(t)) =%,
Pr{h(&x,u,§) > 0} >a

u, <us<u ty<t<t;

min max >

where f'is the objective function, E and D are the operators of expectation and variation,
respectively. @ is a weighting factor between the two terms. Here, x, u and & are state,
decision and random vectors, respectively. g represents the equality constraints (i.e
model equations). The reliability or probability of complying with the inequality
constraints is given by Pr{h(&x,u.£)>0}>a . The value a (0 <a <1) represents the

probability level. Since o can be defined by the user, it is possible to select different
levels and make a compromise between the objective function value and the risk of
constraint violation. However, the values of o are not given by an explicit formula, but
rather defined as probabilities of some implicitly defined regions in the space of the
random parameter &, i.e. the feasible region will shrink if the confidence level is
increased, which implies a conservative decision. As shown in Fig. 1, such problems
can be classified based on the properties of processes, uncertainties and constraint
forms.
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Figure 1. Classification of chance constrained problems

The main challenge in chance constrained programming lies in calculating probability
values, the gradients of the probability function to the controls and possibly Hessians



(Arellano-Garcia et al., 2003). The proposed approach uses a two-staged computation
framework to decompose the problem (Fig. 2). The upper stage is a superior optimizer
following the sequential strategy, where the optimization generates the values of the
decision variables and supplies those to a lower stage (simulation stage). This stage
gives the values of the objective function, the deterministic and probabilistic constraints,
as well as the gradients back to the superior optimizer.

Figure 2. Chance constrained optimization framework

Furthermore, there is a two-layer structure inside the simulation layer to compute the
chance constraints. One is the superior layer, where the probabilities and their gradients
are finally calculated by multivariate integration. The structure of the inferior layer is
the key to the computation of the chance constraints with non-monotonic relation. The
main principal of this section is that at temporarily given values of both the decision and
uncertain variables the bounds of the constrained outputs y and those for the selected
uncertain variables & reflecting the feasible area concerning y, are computed for the
multivariate integration (Arellano-Garcia et al., 2004).

Case study: A semi-batch reactor under time-dependent uncertainty

In order to assess the applicability of the presented approach to allowing for dynamic
random variables, a simple semi-batch reactor example is considered where a sequential
reaction system (A — B — C) takes places (Fig. 3). Both reactions are assumed to be
first order. Basically, the aim is to achieve a certain concentration of the desired product
B and minimize the batch time by means of manipulating the feed flow rate F(t). For
the sake of illustration, the cooling system is neglected and thus the reactor temperature
is also a time-varying operational degree of freedom. By this means, an energy balance
can be omitted and the actual model is simply composed of the component balances,
and the equations for the reaction rates. The chance-constrained optimization is
formulated as follows
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E(1) = {X (0. x5 (D} Figure 3. Scheme of the semi-batch reactor

The total feed amount is restricted to 162mol. In addition to the deterministic
constraints, the defined single chance constraint corresponds to the end-point restriction
on the concentration of B and is to be satisfied with a probability level of 98%. In this
case study, the time-varying uncertainties are assumed to be the feed flow concentration

Xei(t) .
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Figure 4. Feed flow and molar flow disturbance profiles.

Since in the nominal optimization is assumed that the feed flow only consist of A, the
bold lines in Figure 4a-b represent the deterministic problem solution of with regards to
the feed flow rate and the corresponding molar flow of A. Furthermore, the thin lines in
all illustrations in Figure 4 characterize the time-dependent behaviour of the molar flow
of all components in (a) and for each of them in (b)-(d), respectively.
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Figure 5. Concentration profiles in the reactor for (a) nominal and (b) uncertain initial
composition.

Based on the outcomes in Figure 5, the influence of the uncertainties on the composition
during the batch operation is pointed up. In Figure 5b, in particular, the concentration
changes due to the uncertain initial operating conditions underscore the fact that a
classical open-loop implementation of off-line calculated nominal outputs may not lead
to the optimal performance. Furthermore, constraint complying can not be assured
unless a conservative strategy is implemented such as an extended reaction time, lower
feed rate or temperature in order to force the reaction to fully consume the reactant.
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Figure 6. Robust optimal profiles: reactors component amount (left); temperature and
feed flow rate policies (right).

The resulting robust optimal trajectories of the operational degree of freedom and the
state variables are illustrated in Figure 6. A piecewise constant profile of the reactor
temperature is determined. It can be seen that the desired product B is initially
converted relatively slow. Towards the end of the batch process both restrictions for B
and C, respectively, are however fulfilled. Moreover, the feed flow rate is high in the
beginning in order to assure a fast ignition of the reaction. During this period A is
accumulated in the reactor. Afterwards the feed flow rate is decreased drastically due to
the static potential in the reactor. In order to achieve the desired conversion of B, the
remaining feed is again supplied to the reactor. The developed strategies are robust and
may be particularly effective for meeting path and terminal constraints under time-
varying uncertainties.
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The resulting robust optimal trajectories of the operational degree of freedom and the
state variables are illustrated in Figure 6. A piecewise constant profile of the reactor
temperature is determined. It can be seen that the desired product B is initially
converted relatively slow. Towards the end of the batch process both restrictions for B
and C, respectively, are however fulfilled. Moreover, the feed flow rate is high in the
beginning in order to assure a fast ignition of the reaction. During this period A is
accumulated in the reactor. Afterwards the feed flow rate is decreased drastically due to
the static potential in the reactor. In order to achieve the desired conversion of B, the
remaining feed is again supplied to the reactor. The developed strategies are robust and
may be particularly effective for meeting path and terminal constraints under time-
varying uncertainties.

5. Conclusions

This work presents a novel contribution to the research of optimization under
uncertainty and provides theoretical developments and practical applications of chance-
constrained programming. A number of example problems will be discussed including
the application of the optimization framework to large-scale problems. The different
solution strategies are mainly applied to transient processes. The solution provides a
robust operation strategy in the future time horizon. Moreover, the relationship between
the probability levels and the corresponding values of the objective function can be used
for a suitable trade-off decision between profitability and robustness. Thus, one of the
main contributions is also that the solution of such problems based on the developed
approaches can offer both optimal and reliable decisions such that the analysis of the
outcomes allows for identifying the critical constraint which cuts off the largest part of
the feasible region. This information is important for decision makers in order to relax
the constraint, if necessary, so as to arrive at a meaningful decision. It will be clearly
demonstrated that probabilistic programming is a promising technique in solving
optimization problems under uncertainty in process system engineering.
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